These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 26909921)

  • 1. Isolation and characterization of the Chrysanthemum nitrate transporter CmNRT1.
    Gu CS; Zhang XX; Chen SM; Li T; Chen Y; Jiang JF; Chen FD
    Genet Mol Res; 2016 Jan; 15(1):. PubMed ID: 26909921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning of chrysanthemum high-affinity nitrate transporter family (CmNRT2) and characterization of CmNRT2.1.
    Gu C; Song A; Zhang X; Wang H; Li T; Chen Y; Jiang J; Chen F; Chen S
    Sci Rep; 2016 Mar; 6():23462. PubMed ID: 27004464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chrysanthemum CmNAR2 interacts with CmNRT2 in the control of nitrate uptake.
    Gu C; Zhang X; Jiang J; Guan Z; Zhao S; Fang W; Liao Y; Chen S; Chen F
    Sci Rep; 2014 Jul; 4():5833. PubMed ID: 25060485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 150 kDa plasma membrane complex of AtNRT2.5 and AtNAR2.1 is the major contributor to constitutive high-affinity nitrate influx in Arabidopsis thaliana.
    Kotur Z; Glass AD
    Plant Cell Environ; 2015 Aug; 38(8):1490-502. PubMed ID: 25474587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterisation of Chrysanthemum crassum SOS1, encoding a putative plasma membrane Na(+) /H(+) antiporter.
    Song A; Lu J; Jiang J; Chen S; Guan Z; Fang W; Chen F
    Plant Biol (Stuttg); 2012 Sep; 14(5):706-13. PubMed ID: 22404736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1.
    Okamoto M; Kumar A; Li W; Wang Y; Siddiqi MY; Crawford NM; Glass AD
    Plant Physiol; 2006 Mar; 140(3):1036-46. PubMed ID: 16415212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrate Controls Root Development through Posttranscriptional Regulation of the NRT1.1/NPF6.3 Transporter/Sensor.
    Bouguyon E; Perrine-Walker F; Pervent M; Rochette J; Cuesta C; Benkova E; Martinière A; Bach L; Krouk G; Gojon A; Nacry P
    Plant Physiol; 2016 Oct; 172(2):1237-1248. PubMed ID: 27543115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BcNRT1, a plasma membrane-localized nitrate transporter from non-heading Chinese cabbage.
    Yang X; Sun F; Xiong A; Wang F; Kong M; Wang Q; Wang J; Dai W; Xia X; Hou X
    Mol Biol Rep; 2012 Aug; 39(8):7997-8006. PubMed ID: 22539185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake.
    Huang NC; Liu KH; Lo HJ; Tsay YF
    Plant Cell; 1999 Aug; 11(8):1381-92. PubMed ID: 10449574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium.
    Zhang M; Huang H; Dai S
    Gene; 2014 Mar; 537(2):203-13. PubMed ID: 24434369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the cassava nitrate transporter
    Zou L; Qi D; Sun J; Zheng X; Peng M
    J Genet; 2019 Sep; 98():. PubMed ID: 31544785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning and expression analysis of cDNAs encoding a putative Nrt2 nitrate transporter from peach.
    Nakamura Y; Umemiya Y; Masuda K; Inoue H; Fukumoto M
    Tree Physiol; 2007 Apr; 27(4):503-10. PubMed ID: 17241992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repression of nitrate uptake by replacement of Asp105 by asparagine in AtNRT3.1 in Arabidopsis thaliana L.
    Kawachi T; Sunaga Y; Ebato M; Hatanaka T; Harada H
    Plant Cell Physiol; 2006 Oct; 47(10):1437-41. PubMed ID: 16980702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of nitrate uptake pathway in plants affects the cadmium uptake by roots.
    Guan MY; Fan SK; Fang XZ; Jin CW
    Plant Signal Behav; 2015; 10(3):e990794. PubMed ID: 25830329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis root architecture to the spatial heterogeneity of nitrate availability.
    Mounier E; Pervent M; Ljung K; Gojon A; Nacry P
    Plant Cell Environ; 2014 Jan; 37(1):162-74. PubMed ID: 23731054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana.
    Zhuo D; Okamoto M; Vidmar JJ; Glass AD
    Plant J; 1999 Mar; 17(5):563-8. PubMed ID: 10205909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots.
    Yong Z; Kotur Z; Glass AD
    Plant J; 2010 Sep; 63(5):739-48. PubMed ID: 20561257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis NRT1.1 is a bidirectional transporter involved in root-to-shoot nitrate translocation.
    Léran S; Muños S; Brachet C; Tillard P; Gojon A; Lacombe B
    Mol Plant; 2013 Nov; 6(6):1984-7. PubMed ID: 23645597
    [No Abstract]   [Full Text] [Related]  

  • 19. Anionic nutrient transport in plants: the molecular basis of the sulfate transporter gene family.
    Takahashi H; Yoshimoto N; Saito K
    Genet Eng (N Y); 2006; 27():67-80. PubMed ID: 16382872
    [No Abstract]   [Full Text] [Related]  

  • 20. Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana.
    Chen YH; Wu XM; Ling HQ; Yang WC
    Cell Res; 2006 Oct; 16(10):830-40. PubMed ID: 17031393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.