These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26910040)

  • 1. A control strategy to investigate the relationship between specific productivity and high-mannose glycoforms in CHO cells.
    Zalai D; Hevér H; Lovász K; Molnár D; Wechselberger P; Hofer A; Párta L; Putics Á; Herwig C
    Appl Microbiol Biotechnol; 2016 Aug; 100(16):7011-24. PubMed ID: 26910040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the interactions of critical scale-up parameters (pH, pO
    Brunner M; Fricke J; Kroll P; Herwig C
    Bioprocess Biosyst Eng; 2017 Feb; 40(2):251-263. PubMed ID: 27752770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in the understanding of biological implications and modulation methodologies of monoclonal antibody N-linked high mannose glycans.
    Shi HH; Goudar CT
    Biotechnol Bioeng; 2014 Oct; 111(10):1907-19. PubMed ID: 24975601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monensin, a small molecule ionophore, can be used to increase high mannose levels on monoclonal antibodies generated by Chinese hamster ovary production cell-lines.
    Pande S; Rahardjo A; Livingston B; Mujacic M
    Biotechnol Bioeng; 2015 Jul; 112(7):1383-94. PubMed ID: 25619381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures.
    Chee Furng Wong D; Tin Kam Wong K; Tang Goh L; Kiat Heng C; Gek Sim Yap M
    Biotechnol Bioeng; 2005 Jan; 89(2):164-77. PubMed ID: 15593097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient method to control high mannose and core fucose levels in glycosylated antibody production using deoxymannojirimycin.
    Shalel Levanon S; Aharonovitz O; Maor-Shoshani A; Abraham G; Kenett D; Aloni Y
    J Biotechnol; 2018 Jun; 276-277():54-62. PubMed ID: 29673624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell culture media supplemented with raffinose reproducibly enhances high mannose glycan formation.
    Brühlmann D; Muhr A; Parker R; Vuillemin T; Bucsella B; Kalman F; Torre S; La Neve F; Lembo A; Haas T; Sauer M; Souquet J; Broly H; Hemberger J; Jordan M
    J Biotechnol; 2017 Jun; 252():32-42. PubMed ID: 28465212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process performance and product quality in an integrated continuous antibody production process.
    Karst DJ; Steinebach F; Soos M; Morbidelli M
    Biotechnol Bioeng; 2017 Feb; 114(2):298-307. PubMed ID: 27497430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of high mannose levels in N-linked glycosylation through cell culture process conditions to increase antibody-dependent cell-mediated cytotoxicity activity for an antibody biosimilar.
    Rameez S; Gowtham YK; Nayar G; Mostafa SS
    Biotechnol Prog; 2021 Sep; 37(5):e3176. PubMed ID: 34021724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of spectroscopic process analytical technology for rapid quality evaluation during preparation of CHO cell culture media.
    Ou J; Cui W; Zhao Y; Tang Y; Williams A; Wasalathanthri D; Xu J; Lee J; Borys MC; Khetan A
    Biotechnol Prog; 2024; 40(5):e3477. PubMed ID: 38699906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An empirical modeling platform to evaluate the relative control discrete CHO cell synthetic processes exert over recombinant monoclonal antibody production process titer.
    McLeod J; O'Callaghan PM; Pybus LP; Wilkinson SJ; Root T; Racher AJ; James DC
    Biotechnol Bioeng; 2011 Sep; 108(9):2193-204. PubMed ID: 21445882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process parameter shifting: Part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors.
    Trummer E; Fauland K; Seidinger S; Schriebl K; Lattenmayer C; Kunert R; Vorauer-Uhl K; Weik R; Borth N; Katinger H; Müller D
    Biotechnol Bioeng; 2006 Aug; 94(6):1033-44. PubMed ID: 16736530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-Sulfocysteine simplifies fed-batch processes and increases the CHO specific productivity via anti-oxidant activity.
    Hecklau C; Pering S; Seibel R; Schnellbaecher A; Wehsling M; Eichhorn T; Hagen Jv; Zimmer A
    J Biotechnol; 2016 Jan; 218():53-63. PubMed ID: 26654938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycoprofiling effects of media additives on IgG produced by CHO cells in fed-batch bioreactors.
    Kildegaard HF; Fan Y; Sen JW; Larsen B; Andersen MR
    Biotechnol Bioeng; 2016 Feb; 113(2):359-66. PubMed ID: 26222761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A class of low-cost alternatives to kifunensine for increasing high mannose N-linked glycosylation for monoclonal antibody production in Chinese hamster ovary cells.
    Brantley TJ; Mitchelson FG; Khattak SF
    Biotechnol Prog; 2021 Jan; 37(1):e3076. PubMed ID: 32888259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-omics profiling of a CHO cell culture system unravels the effect of culture pH on cell growth, antibody titer, and product quality.
    Lee AP; Kok YJ; Lakshmanan M; Leong D; Zheng L; Lim HL; Chen S; Mak SY; Ang KS; Templeton N; Salim T; Wei X; Gifford E; Tan AH; Bi X; Ng SK; Lee DY; Ling WLW; Ho YS
    Biotechnol Bioeng; 2021 Nov; 118(11):4305-4316. PubMed ID: 34289087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of cultivation conditions in spin tubes for Chinese hamster ovary cells producing erythropoietin and the comparison of glycosylation patterns in different cultivation vessels.
    Strnad J; Brinc M; Spudić V; Jelnikar N; Mirnik L; Carman B; Kravanja Z
    Biotechnol Prog; 2010; 26(3):653-63. PubMed ID: 20544713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mannose metabolism in recombinant CHO cells and its effect on IgG glycosylation.
    Slade PG; Caspary RG; Nargund S; Huang CJ
    Biotechnol Bioeng; 2016 Jul; 113(7):1468-80. PubMed ID: 26724786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures.
    Du Z; Treiber D; McCarter JD; Fomina-Yadlin D; Saleem RA; McCoy RE; Zhang Y; Tharmalingam T; Leith M; Follstad BD; Dell B; Grisim B; Zupke C; Heath C; Morris AE; Reddy P
    Biotechnol Bioeng; 2015 Jan; 112(1):141-55. PubMed ID: 25042542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronized mammalian cell culture: part I--a physical strategy for synchronized cultivation under physiological conditions.
    Barradas OP; Jandt U; Becker M; Bahnemann J; Pörtner R; Zeng AP
    Biotechnol Prog; 2015; 31(1):165-74. PubMed ID: 25044769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.