These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 26910118)
1. Efficacy of targeted AKT inhibition in genetically engineered mouse models of PTEN-deficient prostate cancer. De Velasco MA; Kura Y; Yoshikawa K; Nishio K; Davies BR; Uemura H Oncotarget; 2016 Mar; 7(13):15959-76. PubMed ID: 26910118 [TBL] [Abstract][Full Text] [Related]
2. High Efficacy of Combination Therapy Using PI3K/AKT Inhibitors with Androgen Deprivation in Prostate Cancer Preclinical Models. Marques RB; Aghai A; de Ridder CMA; Stuurman D; Hoeben S; Boer A; Ellston RP; Barry ST; Davies BR; Trapman J; van Weerden WM Eur Urol; 2015 Jun; 67(6):1177-1185. PubMed ID: 25220373 [TBL] [Abstract][Full Text] [Related]
3. The AKT inhibitor AZD5363 is selectively active in PI3KCA mutant gastric cancer, and sensitizes a patient-derived gastric cancer xenograft model with PTEN loss to Taxotere. Li J; Davies BR; Han S; Zhou M; Bai Y; Zhang J; Xu Y; Tang L; Wang H; Liu YJ; Yin X; Ji Q; Yu DH J Transl Med; 2013 Oct; 11():241. PubMed ID: 24088382 [TBL] [Abstract][Full Text] [Related]
4. Blocked autophagy using lysosomotropic agents sensitizes resistant prostate tumor cells to the novel Akt inhibitor AZD5363. Lamoureux F; Thomas C; Crafter C; Kumano M; Zhang F; Davies BR; Gleave ME; Zoubeidi A Clin Cancer Res; 2013 Feb; 19(4):833-44. PubMed ID: 23258740 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of in vivo responses of sorafenib therapy in a preclinical mouse model of PTEN-deficient of prostate cancer. Yamamoto Y; De Velasco MA; Kura Y; Nozawa M; Hatanaka Y; Oki T; Ozeki T; Shimizu N; Minami T; Yoshimura K; Yoshikawa K; Nishio K; Uemura H J Transl Med; 2015 May; 13():150. PubMed ID: 25953027 [TBL] [Abstract][Full Text] [Related]
6. Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Davies BR; Greenwood H; Dudley P; Crafter C; Yu DH; Zhang J; Li J; Gao B; Ji Q; Maynard J; Ricketts SA; Cross D; Cosulich S; Chresta CC; Page K; Yates J; Lane C; Watson R; Luke R; Ogilvie D; Pass M Mol Cancer Ther; 2012 Apr; 11(4):873-87. PubMed ID: 22294718 [TBL] [Abstract][Full Text] [Related]
7. Combination AZD5363 with Enzalutamide Significantly Delays Enzalutamide-resistant Prostate Cancer in Preclinical Models. Toren P; Kim S; Cordonnier T; Crafter C; Davies BR; Fazli L; Gleave ME; Zoubeidi A Eur Urol; 2015 Jun; 67(6):986-990. PubMed ID: 25151012 [TBL] [Abstract][Full Text] [Related]
8. Dual inhibition of autophagy and the AKT pathway in prostate cancer. Lamoureux F; Zoubeidi A Autophagy; 2013 Jul; 9(7):1119-20. PubMed ID: 23670050 [TBL] [Abstract][Full Text] [Related]
9. Synergistic targeting of PI3K/AKT pathway and androgen receptor axis significantly delays castration-resistant prostate cancer progression in vivo. Thomas C; Lamoureux F; Crafter C; Davies BR; Beraldi E; Fazli L; Kim S; Thaper D; Gleave ME; Zoubeidi A Mol Cancer Ther; 2013 Nov; 12(11):2342-55. PubMed ID: 23966621 [TBL] [Abstract][Full Text] [Related]
10. AKT Antagonist AZD5363 Influences Estrogen Receptor Function in Endocrine-Resistant Breast Cancer and Synergizes with Fulvestrant (ICI182780) In Vivo. Ribas R; Pancholi S; Guest SK; Marangoni E; Gao Q; Thuleau A; Simigdala N; Polanska UM; Campbell H; Rani A; Liccardi G; Johnston S; Davies BR; Dowsett M; Martin LA Mol Cancer Ther; 2015 Sep; 14(9):2035-48. PubMed ID: 26116361 [TBL] [Abstract][Full Text] [Related]
11. Sensitivity to PI3K and AKT inhibitors is mediated by divergent molecular mechanisms in subtypes of DLBCL. Erdmann T; Klener P; Lynch JT; Grau M; Vočková P; Molinsky J; Tuskova D; Hudson K; Polanska UM; Grondine M; Mayo M; Dai B; Pfeifer M; Erdmann K; Schwammbach D; Zapukhlyak M; Staiger AM; Ott G; Berdel WE; Davies BR; Cruzalegui F; Trneny M; Lenz P; Barry ST; Lenz G Blood; 2017 Jul; 130(3):310-322. PubMed ID: 28202458 [TBL] [Abstract][Full Text] [Related]
12. Targeting castration-resistant prostate cancer with androgen receptor antisense oligonucleotide therapy. De Velasco MA; Kura Y; Sakai K; Hatanaka Y; Davies BR; Campbell H; Klein S; Kim Y; MacLeod AR; Sugimoto K; Yoshikawa K; Nishio K; Uemura H JCI Insight; 2019 Sep; 4(17):. PubMed ID: 31484823 [TBL] [Abstract][Full Text] [Related]
13. 2-Deoxy-2-[18F]fluoro-D-glucose positron emission tomography demonstrates target inhibition with the potential to predict anti-tumour activity following treatment with the AKT inhibitor AZD5363. Maynard J; Ricketts SA; Gendrin C; Dudley P; Davies BR Mol Imaging Biol; 2013 Aug; 15(4):476-85. PubMed ID: 23344784 [TBL] [Abstract][Full Text] [Related]
14. Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Wang L; Xiong H; Wu F; Zhang Y; Wang J; Zhao L; Guo X; Chang LJ; Zhang Y; You MJ; Koochekpour S; Saleem M; Huang H; Lu J; Deng Y Cell Rep; 2014 Sep; 8(5):1461-74. PubMed ID: 25176644 [TBL] [Abstract][Full Text] [Related]
15. MYC Drives Pten/Trp53-Deficient Proliferation and Metastasis due to IL6 Secretion and AKT Suppression via PHLPP2. Nowak DG; Cho H; Herzka T; Watrud K; DeMarco DV; Wang VM; Senturk S; Fellmann C; Ding D; Beinortas T; Kleinman D; Chen M; Sordella R; Wilkinson JE; Castillo-Martin M; Cordon-Cardo C; Robinson BD; Trotman LC Cancer Discov; 2015 Jun; 5(6):636-51. PubMed ID: 25829425 [TBL] [Abstract][Full Text] [Related]
16. Androgen deprivation induces phenotypic plasticity and promotes resistance to molecular targeted therapy in a PTEN-deficient mouse model of prostate cancer. De Velasco MA; Tanaka M; Yamamoto Y; Hatanaka Y; Koike H; Nishio K; Yoshikawa K; Uemura H Carcinogenesis; 2014 Sep; 35(9):2142-53. PubMed ID: 24986896 [TBL] [Abstract][Full Text] [Related]
17. Vulnerabilities of PTEN-TP53-deficient prostate cancers to compound PARP-PI3K inhibition. González-Billalabeitia E; Seitzer N; Song SJ; Song MS; Patnaik A; Liu XS; Epping MT; Papa A; Hobbs RM; Chen M; Lunardi A; Ng C; Webster KA; Signoretti S; Loda M; Asara JM; Nardella C; Clohessy JG; Cantley LC; Pandolfi PP Cancer Discov; 2014 Aug; 4(8):896-904. PubMed ID: 24866151 [TBL] [Abstract][Full Text] [Related]
18. Reversal of Lactate and PD-1-mediated Macrophage Immunosuppression Controls Growth of PTEN/p53-deficient Prostate Cancer. Chaudagar K; Hieromnimon HM; Khurana R; Labadie B; Hirz T; Mei S; Hasan R; Shafran J; Kelley A; Apostolov E; Al-Eryani G; Harvey K; Rameshbabu S; Loyd M; Bynoe K; Drovetsky C; Solanki A; Markiewicz E; Zamora M; Fan X; Schürer S; Swarbrick A; Sykes DB; Patnaik A Clin Cancer Res; 2023 May; 29(10):1952-1968. PubMed ID: 36862086 [TBL] [Abstract][Full Text] [Related]
19. Combination treatment of prostate cancer with FGF receptor and AKT kinase inhibitors. Feng S; Shao L; Castro P; Coleman I; Nelson PS; Smith PD; Davies BR; Ittmann M Oncotarget; 2017 Jan; 8(4):6179-6192. PubMed ID: 28008155 [TBL] [Abstract][Full Text] [Related]
20. Autocrine IGF-I/insulin receptor axis compensates for inhibition of AKT in ER-positive breast cancer cells with resistance to estrogen deprivation. Fox EM; Kuba MG; Miller TW; Davies BR; Arteaga CL Breast Cancer Res; 2013; 15(4):R55. PubMed ID: 23844554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]