These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26910187)

  • 61. Efficient and durable oxygen reduction and evolution of a hydrothermally synthesized La(Co0.55Mn0.45)0.99O3-δ nanorod/graphene hybrid in alkaline media.
    Ge X; Goh FW; Li B; Hor TS; Zhang J; Xiao P; Wang X; Zong Y; Liu Z
    Nanoscale; 2015 May; 7(19):9046-54. PubMed ID: 25921031
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions.
    Menezes PW; Indra A; Sahraie NR; Bergmann A; Strasser P; Driess M
    ChemSusChem; 2015 Jan; 8(1):164-71. PubMed ID: 25394186
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enhancing Perovskite Electrocatalysis through Strain Tuning of the Oxygen Deficiency.
    Petrie JR; Jeen H; Barron SC; Meyer TL; Lee HN
    J Am Chem Soc; 2016 Jun; 138(23):7252-5. PubMed ID: 27232374
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Molybdenum and Niobium Codoped B-Site-Ordered Double Perovskite Catalyst for Efficient Oxygen Evolution Reaction.
    Sun H; Chen G; Sunarso J; Dai J; Zhou W; Shao Z
    ACS Appl Mater Interfaces; 2018 May; 10(20):16939-16942. PubMed ID: 29741862
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A functionally stable manganese oxide oxygen evolution catalyst in acid.
    Huynh M; Bediako DK; Nocera DG
    J Am Chem Soc; 2014 Apr; 136(16):6002-10. PubMed ID: 24669981
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution.
    Zhao B; Zhang L; Zhen D; Yoo S; Ding Y; Chen D; Chen Y; Zhang Q; Doyle B; Xiong X; Liu M
    Nat Commun; 2017 Feb; 8():14586. PubMed ID: 28240282
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications.
    Lee DU; Park HW; Park MG; Ismayilov V; Chen Z
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):902-10. PubMed ID: 25494945
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Subnanometer Cobalt-Hydroxide-Anchored N-Doped Carbon Nanotube Forest for Bifunctional Oxygen Catalyst.
    Kim JE; Lim J; Lee GY; Choi SH; Maiti UN; Lee WJ; Lee HJ; Kim SO
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1571-7. PubMed ID: 26766495
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Precious-metal-free Co-Fe-O/rGO synergetic electrocatalysts for oxygen evolution reaction by a facile hydrothermal route.
    Geng J; Kuai L; Kan E; Wang Q; Geng B
    ChemSusChem; 2015 Feb; 8(4):659-64. PubMed ID: 25572639
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Design-controlled synthesis of IrO
    de Freitas IC; Parreira LS; Barbosa ECM; Novaes BA; Mou T; Alves TV; Quiroz J; Wang YC; Slater TJ; Thomas A; Wang B; Haigh SJ; Camargo PHC
    Nanoscale; 2020 Jun; 12(23):12281-12291. PubMed ID: 32319490
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media.
    Meng Y; Song W; Huang H; Ren Z; Chen SY; Suib SL
    J Am Chem Soc; 2014 Aug; 136(32):11452-64. PubMed ID: 25058174
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation.
    Bao J; Zhang X; Fan B; Zhang J; Zhou M; Yang W; Hu X; Wang H; Pan B; Xie Y
    Angew Chem Int Ed Engl; 2015 Jun; 54(25):7399-404. PubMed ID: 25951435
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Integrated Three-Dimensional Carbon Paper/Carbon Tubes/Cobalt-Sulfide Sheets as an Efficient Electrode for Overall Water Splitting.
    Wang J; Zhong HX; Wang ZL; Meng FL; Zhang XB
    ACS Nano; 2016 Feb; 10(2):2342-8. PubMed ID: 26783885
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Revealing High Oxygen Evolution Catalytic Activity of Fluorine-Doped Carbon in Alkaline Media.
    Kim J; Fukushima T; Zhou R; Murakoshi K
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30634557
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes.
    Lu X; Yim WL; Suryanto BH; Zhao C
    J Am Chem Soc; 2015 Mar; 137(8):2901-7. PubMed ID: 25658670
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions.
    Zhang J; Zhao Z; Xia Z; Dai L
    Nat Nanotechnol; 2015 May; 10(5):444-52. PubMed ID: 25849787
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction.
    McCrory CC; Jung S; Peters JC; Jaramillo TF
    J Am Chem Soc; 2013 Nov; 135(45):16977-87. PubMed ID: 24171402
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hierarchically porous nitrogen-doped graphene-NiCo(2)O(4) hybrid paper as an advanced electrocatalytic water-splitting material.
    Chen S; Qiao SZ
    ACS Nano; 2013 Nov; 7(11):10190-6. PubMed ID: 24090468
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Degradation Kinetics during Oxygen Electrocatalysis on Perovskite-Based Surfaces in Alkaline Media.
    Bick DS; Krebs TB; Kleimaier D; Zurhelle AF; Staikov G; Waser R; Valov I
    Langmuir; 2018 Jan; 34(4):1347-1352. PubMed ID: 29303591
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Simple Chemical Solution Deposition of Co₃O₄ Thin Film Electrocatalyst for Oxygen Evolution Reaction.
    Jeon HS; Jee MS; Kim H; Ahn SJ; Hwang YJ; Min BK
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24550-5. PubMed ID: 26489005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.