BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26910307)

  • 1. Quantitative Assessment of Mouse Mammary Gland Morphology Using Automated Digital Image Processing and TEB Detection.
    Blacher S; Gérard C; Gallez A; Foidart JM; Noël A; Péqueux C
    Endocrinology; 2016 Apr; 157(4):1709-16. PubMed ID: 26910307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development.
    Ruan W; Kleinberg DL
    Endocrinology; 1999 Nov; 140(11):5075-81. PubMed ID: 10537134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in mammary gland development following neonatal exposure to estradiol, transforming growth factor alpha, and estrogen receptor antagonist ICI 182,780.
    Hilakivi-Clarke L; Cho E; Raygada M; Kenney N
    J Cell Physiol; 1997 Mar; 170(3):279-89. PubMed ID: 9066785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local versus systemically mediated effects of estrogen on normal mammary epithelial cell deoxyribonucleic acid synthesis.
    Haslam SZ
    Endocrinology; 1988 Mar; 122(3):860-7. PubMed ID: 3342755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological and biochemical status of the mammary gland as influenced by conjugated linoleic acid: implication for a reduction in mammary cancer risk.
    Thompson H; Zhu Z; Banni S; Darcy K; Loftus T; Ip C
    Cancer Res; 1997 Nov; 57(22):5067-72. PubMed ID: 9371504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammary gland development in transforming growth factor beta1 null mutant mice: systemic and epithelial effects.
    Ingman WV; Robertson SA
    Biol Reprod; 2008 Oct; 79(4):711-7. PubMed ID: 18614704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid agent-based model of the developing mammary terminal end bud.
    Butner JD; Chuang YL; Simbawa E; Al-Fhaid AS; Mahmoud SR; Cristini V; Wang Z
    J Theor Biol; 2016 Oct; 407():259-270. PubMed ID: 27475843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of the terminal end bud in the prepubertal-pubertal mouse mammary gland.
    Ball SM
    Anat Rec; 1998 Apr; 250(4):459-64. PubMed ID: 9566536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Caffeine, theophylline, theobromine, and developmental growth of the mouse mammary gland.
    VanderPloeg LC; Wolfrom DM; Rao AR; Braselton WE; Welsch CW
    J Environ Pathol Toxicol Oncol; 1992; 11(3):177-89. PubMed ID: 1625188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perinatal ethinyl oestradiol alters mammary gland development in male and female Wistar rats.
    Mandrup KR; Hass U; Christiansen S; Boberg J
    Int J Androl; 2012 Jun; 35(3):385-96. PubMed ID: 22428746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessment of mammary gland development in female Long Evans rats following in utero exposure to atrazine.
    Hovey RC; Coder PS; Wolf JC; Sielken RL; Tisdel MO; Breckenridge CB
    Toxicol Sci; 2011 Feb; 119(2):380-90. PubMed ID: 21059795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal and postpartal morphology of the mammary gland in nude mice.
    Militzer K; Schwalenstöcker H
    J Exp Anim Sci; 1996 Aug; 38(1):1-12. PubMed ID: 8870410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct action of 17 beta-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography.
    Daniel CW; Silberstein GB; Strickland P
    Cancer Res; 1987 Nov; 47(22):6052-7. PubMed ID: 3664507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heregulin induces in vivo proliferation and differentiation of mammary epithelium into secretory lobuloalveoli.
    Jones FE; Jerry DJ; Guarino BC; Andrews GC; Stern DF
    Cell Growth Differ; 1996 Aug; 7(8):1031-8. PubMed ID: 8853899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional and spatiotemporal regulation of prolactin receptor mRNA and cooperativity with progesterone receptor function during ductal branch growth in the mammary gland.
    Hovey RC; Trott JF; Ginsburg E; Goldhar A; Sasaki MM; Fountain SJ; Sundararajan K; Vonderhaar BK
    Dev Dyn; 2001 Oct; 222(2):192-205. PubMed ID: 11668597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual roles for macrophages in ovarian cycle-associated development and remodelling of the mammary gland epithelium.
    Chua AC; Hodson LJ; Moldenhauer LM; Robertson SA; Ingman WV
    Development; 2010 Dec; 137(24):4229-38. PubMed ID: 21068060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vanadate disrupts mammary gland development in whole organ culture.
    Gallo-Hendrikx E; Murray SA; Vonderhaar BK; Xiao ZX
    Dev Dyn; 2001 Nov; 222(3):354-67. PubMed ID: 11747071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of Alx4, a stromally-restricted homeodomain protein, impairs mammary epithelial morphogenesis.
    Joshi PA; Chang H; Hamel PA
    Dev Biol; 2006 Sep; 297(1):284-94. PubMed ID: 16916507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mouse model to study the effects of hormone replacement therapy on normal mammary gland during menopause: enhanced proliferative response to estrogen in late postmenopausal mice.
    Raafat AM; Hofseth LJ; Li S; Bennett JM; Haslam SZ
    Endocrinology; 1999 Jun; 140(6):2570-80. PubMed ID: 10342844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammary gland morphology and gene expression signature of weanling male and female rats following exposure to exogenous estradiol.
    Miousse IR; Gomez-Acevedo H; Sharma N; Vantrease J; Hennings L; Shankar K; Cleves MA; Badger TM; Ronis MJ
    Exp Biol Med (Maywood); 2013 Sep; 238(9):1033-46. PubMed ID: 23925648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.