These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 26910394)
1. Combined Blip and Staircase Response of Ascorbic Acid-Stabilized Copper Single Nanoparticle Collision by Electrocatalytic Glucose Oxidation. Choi YD; Jung SY; Kim KJ; Kwon SJ Chem Asian J; 2016 May; 11(9):1338-42. PubMed ID: 26910394 [TBL] [Abstract][Full Text] [Related]
2. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions. Mun SK; Lee S; Kim DY; Kwon SJ Chem Asian J; 2017 Sep; 12(18):2434-2440. PubMed ID: 28662286 [TBL] [Abstract][Full Text] [Related]
3. Potential-controlled current responses from staircase to blip in single Pt nanoparticle collisions on a Ni ultramicroelectrode. Jung AR; Lee S; Joo JW; Shin C; Bae H; Moon SG; Kwon SJ J Am Chem Soc; 2015 Feb; 137(5):1762-5. PubMed ID: 25607323 [TBL] [Abstract][Full Text] [Related]
4. Observation and Analysis of Staircase Response of Single Palladium Nanoparticle Collision on Gold Ultramicroelectrodes. Rudakemwa H; Kim KJ; Park TE; Son H; Na J; Kwon SJ Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144883 [TBL] [Abstract][Full Text] [Related]
5. Analysis of diffusion-controlled stochastic events of iridium oxide single nanoparticle collisions by scanning electrochemical microscopy. Kwon SJ; Bard AJ J Am Chem Soc; 2012 Apr; 134(16):7102-8. PubMed ID: 22452267 [TBL] [Abstract][Full Text] [Related]
6. An artificial enzyme-based assay: DNA detection using a peroxidase-like copper-creatinine complex. Singh A; Patra S; Lee JA; Park KH; Yang H Biosens Bioelectron; 2011 Aug; 26(12):4798-803. PubMed ID: 21726993 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical responses and electrocatalysis at single au nanoparticles. Li Y; Cox JT; Zhang B J Am Chem Soc; 2010 Mar; 132(9):3047-54. PubMed ID: 20148588 [TBL] [Abstract][Full Text] [Related]
8. Composition-selective fabrication of ordered intermetallic Au-Cu nanowires and their application to nano-size electrochemical glucose detection. Kim SI; Eom G; Kang M; Kang T; Lee H; Hwang A; Yang H; Kim B Nanotechnology; 2015 Jun; 26(24):245702. PubMed ID: 26016531 [TBL] [Abstract][Full Text] [Related]
9. Chronoamperometric Observation and Analysis of Electrocatalytic Ability of Single Pd Nanoparticle for Hydrogen Peroxide Reduction Reaction. Park JY; Kim KJ; Son H; Kwon SJ Nanomaterials (Basel); 2018 Oct; 8(11):. PubMed ID: 30373100 [TBL] [Abstract][Full Text] [Related]
10. A new method for electrocatalytic oxidation of ascorbic acid at the Cu(II) zeolite-modified electrode. Rohani T; Taher MA Talanta; 2009 May; 78(3):743-7. PubMed ID: 19269422 [TBL] [Abstract][Full Text] [Related]
11. Compositional dependence of the stability of AuCu alloy nanoparticles. Xu Z; Lai E; Shao-Horn Y; Hamad-Schifferli K Chem Commun (Camb); 2012 Jun; 48(45):5626-8. PubMed ID: 22531479 [TBL] [Abstract][Full Text] [Related]
12. One pot synthesis of poly(5-hydroxyl-1,4-naphthoquinone) stabilized gold nanoparticles using the monomer as the reducing agent for nonenzymatic electrochemical detection of glucose. Cooray MC; Liu Y; Langford SJ; Bond AM; Zhang J Anal Chim Acta; 2015 Jan; 856():27-34. PubMed ID: 25542355 [TBL] [Abstract][Full Text] [Related]
13. Phytoproteins in green leaves as building blocks for photosynthesis of gold nanoparticles: An efficient electrocatalyst towards the oxidation of ascorbic acid and the reduction of hydrogen peroxide. Megarajan S; Ayaz Ahmed KB; Rajendra Kumar Reddy G; Suresh Kumar P; Anbazhagan V J Photochem Photobiol B; 2016 Feb; 155():7-12. PubMed ID: 26722997 [TBL] [Abstract][Full Text] [Related]
14. DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. Kwon SJ; Bard AJ J Am Chem Soc; 2012 Jul; 134(26):10777-9. PubMed ID: 22702801 [TBL] [Abstract][Full Text] [Related]
15. Observation of Single Nanoparticle Collisions with Green Synthesized Pt, Au, and Ag Nanoparticles Using Electrocatalytic Signal Amplification Method. Sundar S; Kim KJ; Kwon SJ Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31783669 [TBL] [Abstract][Full Text] [Related]
16. Pt Nanoparticle Collisions Detected by Electrocatalytic Amplification and Atomic Force Microscopy Imaging: Nanoparticle Collision Frequency, Adsorption, and Random Distribution at an Ultramicroelectrode Surface. Ortiz-Ledón CA; Zoski CG Anal Chem; 2017 Jun; 89(12):6424-6431. PubMed ID: 28541030 [TBL] [Abstract][Full Text] [Related]
17. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles. Dasari R; Robinson DA; Stevenson KJ J Am Chem Soc; 2013 Jan; 135(2):570-3. PubMed ID: 23270578 [TBL] [Abstract][Full Text] [Related]
18. Observation of Single Pt Nanoparticle Collisions: Enhanced Electrocatalytic Activity on a Pd Ultramicroelectrode. Shin C; Park TE; Park C; Kwon SJ Chemphyschem; 2016 Jun; 17(11):1637-41. PubMed ID: 26955784 [TBL] [Abstract][Full Text] [Related]
19. Growth of Cu particles on a Cu2O truncated octahedron: tuning of the Cu content for efficient glucose sensing. Wang G; Sun H; Ding L; Zhou G; Wang ZS Phys Chem Chem Phys; 2015 Oct; 17(37):24361-9. PubMed ID: 26330109 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose. Tee SY; Ye E; Pan PH; Lee CJ; Hui HK; Zhang SY; Koh LD; Dong Z; Han MY Nanoscale; 2015 Jul; 7(25):11190-8. PubMed ID: 26061696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]