These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26910506)

  • 1. Total Synthesis of Trioxacarcins DC-45-A1, A, D, C, and C7″-epi-C and Full Structural Assignment of Trioxacarcin C.
    Nicolaou KC; Cai Q; Sun H; Qin B; Zhu S
    J Am Chem Soc; 2016 Mar; 138(9):3118-24. PubMed ID: 26910506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Component-based syntheses of trioxacarcin A, DC-45-A1 and structural analogues.
    Magauer T; Smaltz DJ; Myers AG
    Nat Chem; 2013 Oct; 5(10):886-93. PubMed ID: 24056347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total synthesis of trioxacarcin DC-45-A2.
    Nicolaou KC; Cai Q; Qin B; Petersen MT; Mikkelsen RJ; Heretsch P
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):3074-8. PubMed ID: 25583408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Streamlined Total Synthesis of Trioxacarcins and Its Application to the Design, Synthesis, and Biological Evaluation of Analogues Thereof. Discovery of Simpler Designed and Potent Trioxacarcin Analogues.
    Nicolaou KC; Chen P; Zhu S; Cai Q; Erande RD; Li R; Sun H; Pulukuri KK; Rigol S; Aujay M; Sandoval J; Gavrilyuk J
    J Am Chem Soc; 2017 Nov; 139(43):15467-15478. PubMed ID: 29052423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystalline guanine adducts of natural and synthetic trioxacarcins suggest a common biological mechanism and reveal a basis for the instability of trioxacarcin A.
    Pröpper K; Dittrich B; Smaltz DJ; Magauer T; Myers AG
    Bioorg Med Chem Lett; 2014 Sep; 24(18):4410-4413. PubMed ID: 25176186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiply convergent platform for the synthesis of trioxacarcins.
    Švenda J; Hill N; Myers AG
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):6709-14. PubMed ID: 21245350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly stereoselective synthesis of aminoglycosides via rhodium-catalyzed and substrate-controlled aziridination of glycals.
    Lorpitthaya R; Sophy KB; Kuo JL; Liu XW
    Org Biomol Chem; 2009 Apr; 7(7):1284-7. PubMed ID: 19300810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total synthesis of (-)-tirandamycin C utilizing a desymmetrization protocol.
    Yadav JS; Dhara S; Hossain SS; Mohapatra DK
    J Org Chem; 2012 Nov; 77(21):9628-33. PubMed ID: 23039073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of the pluramycins 2: total synthesis and structure assignment of saptomycin B.
    Kitamura K; Maezawa Y; Ando Y; Kusumi T; Matsumoto T; Suzuki K
    Angew Chem Int Ed Engl; 2014 Jan; 53(5):1262-5. PubMed ID: 24356940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a C(30-38) dioxabicyclo[3.2.1]octane subtarget for (+)-sorangicin A, exploiting a regio- and stereocontrolled acid-catalyzed epoxide ring opening.
    Smith AB; Fox RJ
    Org Lett; 2004 Apr; 6(9):1477-80. PubMed ID: 15101771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total Synthesis and Full Structural Assignment of Namenamicin.
    Nicolaou KC; Li R; Lu Z; Pitsinos EN; Alemany LB
    J Am Chem Soc; 2018 Jul; 140(26):8091-8095. PubMed ID: 29932325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselective Synthesis of S-Linked Hexasaccharide of Landomycin A via Umpolung S-Glycosylation.
    Baryal KN; Zhu J
    Org Lett; 2015 Sep; 17(18):4530-3. PubMed ID: 26334208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Total synthesis of sialic acid by a sequential rhodium-catalyzed aziridination and Barbier allylation of D-glycal.
    Lorpitthaya R; Suryawanshi SB; Wang S; Pasunooti KK; Cai S; Ma J; Liu XW
    Angew Chem Int Ed Engl; 2011 Dec; 50(50):12054-7. PubMed ID: 22006859
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on the synthesis of landomycin A. Synthesis of the originally assigned structure of the aglycone, landomycinone, and revision of structure.
    Roush WR; Neitz RJ
    J Org Chem; 2004 Jul; 69(15):4906-12. PubMed ID: 15255715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tackling the challenges in the total synthesis of landomycin A.
    Yang X; Wang P; Yu B
    Chem Rec; 2013 Feb; 13(1):70-84. PubMed ID: 23389835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric Total Synthesis of Brasilicardins.
    Yoshimura F; Itoh R; Torizuka M; Mori G; Tanino K
    Angew Chem Int Ed Engl; 2018 Dec; 57(52):17161-17167. PubMed ID: 30383323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereoselective synthesis of 4-amino-2,3-unsaturated-N-Cbz-imino-O-glycosides via new diastereoisomeric N-Cbz-imino glycal-derived allyl N-nosyl aziridines.
    Di Bussolo V; Fiasella A; Favero L; Bertolini F; Crotti P
    Org Lett; 2009 Jun; 11(12):2675-8. PubMed ID: 19456164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of the pluramycins 1: two designed anthrones as enabling platforms for flexible bis-C-glycosylation.
    Kitamura K; Ando Y; Matsumoto T; Suzuki K
    Angew Chem Int Ed Engl; 2014 Jan; 53(5):1258-61. PubMed ID: 24375957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nickel-catalyzed stereoselective formation of alpha-2-deoxy-2-amino glycosides.
    Mensah EA; Nguyen HM
    J Am Chem Soc; 2009 Jul; 131(25):8778-80. PubMed ID: 19496537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of the C29-C37 bicyclic ether core of (+)-sorangicin A.
    Crimmins MT; Haley MW
    Org Lett; 2006 Sep; 8(19):4223-5. PubMed ID: 16956192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.