These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26910517)

  • 1. Complete wetting of graphene by biological lipids.
    Luan B; Huynh T; Zhou R
    Nanoscale; 2016 Mar; 8(10):5750-4. PubMed ID: 26910517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wetting Properties of Defective Graphene Oxide: A Molecular Simulation Study.
    Xu K; Zhang J; Hao X; Zhang C; Wei N; Zhang C
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29899306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wetting of graphene oxide: a molecular dynamics study.
    Wei N; Lv C; Xu Z
    Langmuir; 2014 Apr; 30(12):3572-8. PubMed ID: 24611723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stick-slip control in nanoscale boundary lubrication by surface wettability.
    Chen W; Foster AS; Alava MJ; Laurson L
    Phys Rev Lett; 2015 Mar; 114(9):095502. PubMed ID: 25793825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets.
    Li H; Zeng XC
    ACS Nano; 2012 Mar; 6(3):2401-9. PubMed ID: 22356158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wetting transparency of graphene.
    Rafiee J; Mi X; Gullapalli H; Thomas AV; Yavari F; Shi Y; Ajayan PM; Koratkar NA
    Nat Mater; 2012 Jan; 11(3):217-22. PubMed ID: 22266468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states.
    Chadda R; Bernhardt N; Kelley EG; Teixeira SC; Griffith K; Gil-Ley A; Öztürk TN; Hughes LE; Forsythe A; Krishnamani V; Faraldo-Gómez JD; Robertson JL
    Elife; 2021 Apr; 10():. PubMed ID: 33825681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.
    Rana MK; Chandra A
    J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the Lipid Structure and Fluidity of Lipid Membranes on Epitaxial Graphene and Their Correlation to Graphene Features.
    Farell M; Wetherington M; Shankla M; Chae I; Subramanian S; Kim SH; Aksimentiev A; Robinson J; Kumar M
    Langmuir; 2019 Apr; 35(13):4726-4735. PubMed ID: 30844287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wettability of graphene.
    Raj R; Maroo SC; Wang EN
    Nano Lett; 2013 Apr; 13(4):1509-15. PubMed ID: 23458704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential toxicity of graphene to cell functions via disrupting protein-protein interactions.
    Luan B; Huynh T; Zhao L; Zhou R
    ACS Nano; 2015 Jan; 9(1):663-9. PubMed ID: 25494677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What is the contact angle of water on graphene?
    Taherian F; Marcon V; van der Vegt NF; Leroy F
    Langmuir; 2013 Feb; 29(5):1457-65. PubMed ID: 23320893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interlayer water regulates the bio-nano interface of a β-sheet protein stacking on graphene.
    Lv W; Xu G; Zhang H; Li X; Liu S; Niu H; Xu D; Wu R
    Sci Rep; 2015 Jan; 5():7572. PubMed ID: 25557857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting Transitions of Liquid Gallium Film on Nanopillar-Decorated Graphene Surfaces.
    Wang J; Li T; Li Y; Duan Y; Jiang Y; Arandiyan H; Li H
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30241288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study.
    Baweja L; Balamurugan K; Subramanian V; Dhawan A
    J Mol Graph Model; 2015 Sep; 61():175-85. PubMed ID: 26275931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influences of ambient temperature, surface fluctuation and charge density on wettability properties of graphene film.
    Wang W; Zhang H; Li S; Zhan Y
    Nanotechnology; 2016 Feb; 27(7):075707. PubMed ID: 26783182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-Dependent Adhesion of Graphene Suspended on a Trench.
    Budrikis Z; Zapperi S
    Nano Lett; 2016 Jan; 16(1):387-91. PubMed ID: 26652939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics of Cellulose Amphiphilicity at the Graphene-Water Interface.
    Alqus R; Eichhorn SJ; Bryce RA
    Biomacromolecules; 2015 Jun; 16(6):1771-83. PubMed ID: 26015270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic insight into surface wetting: relations between interfacial water structure and the underlying lattice constant.
    Zhu C; Li H; Huang Y; Zeng XC; Meng S
    Phys Rev Lett; 2013 Mar; 110(12):126101. PubMed ID: 25166822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.