BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 26910732)

  • 1. Role of Electrostatic Interactions in Binding of Peptides and Intrinsically Disordered Proteins to Their Folded Targets: 2. The Model of Encounter Complex Involving the Double Mutant of the c-Crk N-SH3 Domain and Peptide Sos.
    Yuwen T; Xue Y; Skrynnikov NR
    Biochemistry; 2016 Mar; 55(12):1784-800. PubMed ID: 26910732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y; Yuwen T; Zhu F; Skrynnikov NR
    Biochemistry; 2014 Oct; 53(41):6473-95. PubMed ID: 25207671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt-bridge dynamics in intrinsically disordered proteins: A trade-off between electrostatic interactions and structural flexibility.
    Basu S; Biswas P
    Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):624-641. PubMed ID: 29548979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New force field on modeling intrinsically disordered proteins.
    Wang W; Ye W; Jiang C; Luo R; Chen HF
    Chem Biol Drug Des; 2014 Sep; 84(3):253-69. PubMed ID: 24589355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure and IR signatures of the arginine-glutamate salt bridge. Insights from the classical MD simulations.
    Vener MV; Odinokov AV; Wehmeyer C; Sebastiani D
    J Chem Phys; 2015 Jun; 142(21):215106. PubMed ID: 26049530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental characterization of electrostatic and conformational heterogeneity in an SH3 domain.
    Adhikary R; Zimmermann J; Liu J; Dawson PE; Romesberg FE
    J Phys Chem B; 2013 Oct; 117(42):13082-9. PubMed ID: 23834285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding.
    Arai M; Sugase K; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9614-9. PubMed ID: 26195786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics Simulations of Phosphorylated Intrinsically Disordered Proteins: A Force Field Comparison.
    Rieloff E; Skepö M
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation Regulates the Bound Structure of an Intrinsically Disordered Protein: The p53-TAZ2 Case.
    Ithuralde RE; Turjanski AG
    PLoS One; 2016; 11(1):e0144284. PubMed ID: 26742101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General Purpose Water Model Can Improve Atomistic Simulations of Intrinsically Disordered Proteins.
    Shabane PS; Izadi S; Onufriev AV
    J Chem Theory Comput; 2019 Apr; 15(4):2620-2634. PubMed ID: 30865832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the promiscuous interactions between intrinsically disordered transactivation domains and the KIX domain.
    Huang Y; Gao M; Yang F; Zhang L; Su Z
    Proteins; 2017 Nov; 85(11):2088-2095. PubMed ID: 28786199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A disordered encounter complex is central to the yeast Abp1p SH3 domain binding pathway.
    Gerlach GJ; Carrock R; Stix R; Stollar EJ; Ball KA
    PLoS Comput Biol; 2020 Sep; 16(9):e1007815. PubMed ID: 32925900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational Preferences of an Intrinsically Disordered Protein Domain: A Case Study for Modern Force Fields.
    Gopal SM; Wingbermühle S; Schnatwinkel J; Juber S; Herrmann C; Schäfer LV
    J Phys Chem B; 2021 Jan; 125(1):24-35. PubMed ID: 33382616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of electrostatic forces on the association kinetics and conformational ensemble of an intrinsically disordered protein.
    Cook EC; Creamer TP
    Proteins; 2020 Dec; 88(12):1607-1619. PubMed ID: 32654182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of an intrinsically disordered segment in Ets1 shifts conformational sampling toward binding-competent substates.
    Bui JM; Gsponer J
    Structure; 2014 Aug; 22(8):1196-1203. PubMed ID: 25017730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion of a disordered polypeptide chain as studied by paramagnetic relaxation enhancements, 15N relaxation, and molecular dynamics simulations: how fast is segmental diffusion in denatured ubiquitin?
    Xue Y; Skrynnikov NR
    J Am Chem Soc; 2011 Sep; 133(37):14614-28. PubMed ID: 21819149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding induced intrinsically disordered protein folding with molecular dynamics simulation.
    Chen H
    Adv Exp Med Biol; 2015; 827():111-21. PubMed ID: 25387963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete Coupled Binding-Folding Pathway of the Intrinsically Disordered Transcription Factor Protein Brinker Revealed by Molecular Dynamics Simulations and Markov State Modeling.
    Collins AP; Anderson PC
    Biochemistry; 2018 Jul; 57(30):4404-4420. PubMed ID: 29990433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation of peptide fragments from Sos proteins bound to the N-terminal SH3 domain of Grb2 determined by NMR spectroscopy.
    Wittekind M; Mapelli C; Farmer BT; Suen KL; Goldfarb V; Tsao J; Lavoie T; Barbacid M; Meyers CA; Mueller L
    Biochemistry; 1994 Nov; 33(46):13531-9. PubMed ID: 7947763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk.
    Wu X; Knudsen B; Feller SM; Zheng J; Sali A; Cowburn D; Hanafusa H; Kuriyan J
    Structure; 1995 Feb; 3(2):215-26. PubMed ID: 7735837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.