These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 26910808)

  • 1. Resonant Femtosecond Stimulated Raman Spectra: Theory and Simulations.
    Rao BJ; Gelin MF; Domcke W
    J Phys Chem A; 2016 May; 120(19):3286-95. PubMed ID: 26910808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonant femtosecond stimulated Raman spectroscopy with an intense actinic pump pulse: Application to conical intersections.
    Rao BJ; Gelin MF; Domcke W
    J Chem Phys; 2017 Feb; 146(8):084105. PubMed ID: 28249413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of femtosecond stimulated Raman spectroscopy.
    Lee SY; Zhang D; McCamant DW; Kukura P; Mathies RA
    J Chem Phys; 2004 Aug; 121(8):3632-42. PubMed ID: 15303930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states.
    Gelin MF; Domcke W; Rao BJ
    J Chem Phys; 2016 May; 144(18):184307. PubMed ID: 27179484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave packet theory of dynamic stimulated Raman spectra in femtosecond pump-probe spectroscopy.
    Sun Z; Jin Z; Lu J; Zhang DH; Lee SY
    J Chem Phys; 2007 May; 126(17):174104. PubMed ID: 17492854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum theory of (femtosecond) time-resolved stimulated Raman scattering.
    Sun Z; Lu J; Zhang DH; Lee SY
    J Chem Phys; 2008 Apr; 128(14):144114. PubMed ID: 18412430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excited-state Raman spectroscopy with and without actinic excitation: S1 Raman spectra of trans-azobenzene.
    Dobryakov AL; Quick M; Ioffe IN; Granovsky AA; Ernsting NP; Kovalenko SA
    J Chem Phys; 2014 May; 140(18):184310. PubMed ID: 24832273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast hydrogen-bonding dynamics in the electronic excited state of photoactive yellow protein revealed by femtosecond stimulated Raman spectroscopy.
    Nakamura R; Hamada N; Abe K; Yoshizawa M
    J Phys Chem B; 2012 Dec; 116(51):14768-75. PubMed ID: 23210980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond stimulated Raman spectroscopy of flavin after optical excitation.
    Weigel A; Dobryakov A; Klaumünzer B; Sajadi M; Saalfrank P; Ernsting NP
    J Phys Chem B; 2011 Apr; 115(13):3656-80. PubMed ID: 21410155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing non-adiabatic conical intersections using absorption, spontaneous Raman, and femtosecond stimulated Raman spectroscopy.
    Patuwo MY; Lee SY
    J Chem Phys; 2013 Dec; 139(23):234101. PubMed ID: 24359346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of femtosecond "double-slit" experiments for a chromophore in a dissipative environment.
    Gelin MF; Tanimura Y; Domcke W
    J Chem Phys; 2013 Dec; 139(21):214302. PubMed ID: 24320375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulated X-ray Resonant Raman Spectroscopy of Conical Intersections in Thiophenol.
    Cho D; Rouxel JR; Mukamel S
    J Phys Chem Lett; 2020 Jun; 11(11):4292-4297. PubMed ID: 32370507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Femtosecond-Stimulated Raman Spectroscopy without Actinic Excitation Showing Low-Frequency Vibrational Activity in the S2 State of All-Trans β-Carotene.
    Quick M; Dobryakov AL; Kovalenko SA; Ernsting NP
    J Phys Chem Lett; 2015 Apr; 6(7):1216-20. PubMed ID: 26262974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of femtosecond two-dimensional electronic spectra of conical intersections.
    Krčmář J; Gelin MF; Domcke W
    J Chem Phys; 2015 Aug; 143(7):074308. PubMed ID: 26298135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV laser pulse trains for Raman spectroscopy.
    Swanson D; Sprangle P
    Opt Lett; 2021 Oct; 46(19):4867-4870. PubMed ID: 34598220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing.
    Kearney SP
    Appl Opt; 2014 Oct; 53(28):6579-85. PubMed ID: 25322247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions.
    Lucht RP; Kinnius PJ; Roy S; Gord JR
    J Chem Phys; 2007 Jul; 127(4):044316. PubMed ID: 17672699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of line shapes in femtosecond broadband stimulated Raman spectroscopy on pump-probe time delay.
    Yoon S; McCamant DW; Kukura P; Mathies RA; Zhang D; Lee SY
    J Chem Phys; 2005 Jan; 122(2):024505. PubMed ID: 15638596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population-controlled impulsive vibrational spectroscopy: background- and baseline-free Raman spectroscopy of excited electronic states.
    Wende T; Liebel M; Schnedermann C; Pethick RJ; Kukura P
    J Phys Chem A; 2014 Oct; 118(43):9976-84. PubMed ID: 25244029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S* state.
    Kloz M; Weißenborn J; Polívka T; Frank HA; Kennis JT
    Phys Chem Chem Phys; 2016 May; 18(21):14619-28. PubMed ID: 27180633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.