These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 26911023)
1. [Enhanced Performance of Rolled Membrane Electrode Assembly by Adding Cation Exchange Resin to Anode in Microbial Fuel Cells]. Mei Z; Zhang Z; Wang X Huan Jing Ke Xue; 2015 Nov; 36(11):4311-8. PubMed ID: 26911023 [TBL] [Abstract][Full Text] [Related]
2. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system. Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975 [TBL] [Abstract][Full Text] [Related]
3. Effects of Fe, Ni, and Fe/Ni metallic nanoparticles on power production and biosurfactant production from used vegetable oil in the anode chamber of a microbial fuel cell. Liu J; Vipulanandan C Waste Manag; 2017 Aug; 66():169-177. PubMed ID: 28404510 [TBL] [Abstract][Full Text] [Related]
4. Quantification of the internal resistance distribution of microbial fuel cells. Fan Y; Sharbrough E; Liu H Environ Sci Technol; 2008 Nov; 42(21):8101-7. PubMed ID: 19031909 [TBL] [Abstract][Full Text] [Related]
5. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Kim JR; Cheng S; Oh SE; Logan BE Environ Sci Technol; 2007 Feb; 41(3):1004-9. PubMed ID: 17328216 [TBL] [Abstract][Full Text] [Related]
6. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Oh SE; Logan BE Appl Microbiol Biotechnol; 2006 Mar; 70(2):162-9. PubMed ID: 16167143 [TBL] [Abstract][Full Text] [Related]
7. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy. Borole AP; Aaron D; Hamilton CY; Tsouris C Environ Sci Technol; 2010 Apr; 44(7):2740-5. PubMed ID: 20222678 [TBL] [Abstract][Full Text] [Related]
8. Electric power generation by a submersible microbial fuel cell equipped with a membrane electrode assembly. Min B; Poulsen FW; Thygesen A; Angelidaki I Bioresour Technol; 2012 Aug; 118():412-7. PubMed ID: 22705964 [TBL] [Abstract][Full Text] [Related]
9. Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Ramasamy RP; Ren Z; Mench MM; Regan JM Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217 [TBL] [Abstract][Full Text] [Related]
10. Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal. Guo W; Cui Y; Song H; Sun J Bioprocess Biosyst Eng; 2014 Sep; 37(9):1749-58. PubMed ID: 24535080 [TBL] [Abstract][Full Text] [Related]
11. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(VI) reduction and bioelectricity production. Zhou J; Li M; Zhou W; Hu J; Long Y; Tsang YF; Zhou S Sci Total Environ; 2020 Dec; 748():141425. PubMed ID: 32798878 [TBL] [Abstract][Full Text] [Related]
12. Continuous flowing membraneless microbial fuel cells with separated electrode chambers. Du F; Xie B; Dong W; Jia B; Dong K; Liu H Bioresour Technol; 2011 Oct; 102(19):8914-20. PubMed ID: 21821412 [TBL] [Abstract][Full Text] [Related]
13. Impact of Ohmic Resistance on Measured Electrode Potentials and Maximum Power Production in Microbial Fuel Cells. Logan BE; Zikmund E; Yang W; Rossi R; Kim KY; Saikaly PE; Zhang F Environ Sci Technol; 2018 Aug; 52(15):8977-8985. PubMed ID: 29965737 [TBL] [Abstract][Full Text] [Related]
14. A novel configuration of microbial fuel cell stack bridged internally through an extra cation exchange membrane. Liu Z; Liu J; Zhang S; Su Z Biotechnol Lett; 2008 Jun; 30(6):1017-23. PubMed ID: 18259873 [TBL] [Abstract][Full Text] [Related]
15. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns. Yang J; Cheng S; Sun Y; Li C Biotechnol Lett; 2017 Oct; 39(10):1515-1520. PubMed ID: 28664313 [TBL] [Abstract][Full Text] [Related]
16. Using live algae at the anode of a microbial fuel cell to generate electricity. Xu C; Poon K; Choi MM; Wang R Environ Sci Pollut Res Int; 2015 Oct; 22(20):15621-35. PubMed ID: 26018284 [TBL] [Abstract][Full Text] [Related]
17. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies. Butler CS; Nerenberg R Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985 [TBL] [Abstract][Full Text] [Related]
18. Effects of cathode/anode electron accumulation on soil microbial fuel cell power generation and heavy metal removal. Zhang J; Sun Y; Zhang H; Cao X; Wang H; Li X Environ Res; 2021 Jul; 198():111217. PubMed ID: 33974843 [TBL] [Abstract][Full Text] [Related]
19. Minimum interspatial electrode spacing to optimize air-cathode microbial fuel cell operation with a membrane electrode assembly. Moon JM; Kondaveeti S; Lee TH; Song YC; Min B Bioelectrochemistry; 2015 Dec; 106(Pt B):263-7. PubMed ID: 26286838 [TBL] [Abstract][Full Text] [Related]
20. Separator characteristics for increasing performance of microbial fuel cells. Zhang X; Cheng S; Wang X; Huang X; Logan BE Environ Sci Technol; 2009 Nov; 43(21):8456-61. PubMed ID: 19924984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]