These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 26911523)
1. Unsupervised text mining for assessing and augmenting GWAS results. Ailem M; Role F; Nadif M; Demenais F J Biomed Inform; 2016 Apr; 60():252-9. PubMed ID: 26911523 [TBL] [Abstract][Full Text] [Related]
2. Bridging heterogeneous mutation data to enhance disease gene discovery. Zhou K; Wang Y; Bretonnel Cohen K; Kim JD; Ma X; Shen Z; Meng X; Xia J Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33847357 [TBL] [Abstract][Full Text] [Related]
3. GWAS Integrator: a bioinformatics tool to explore human genetic associations reported in published genome-wide association studies. Yu W; Yesupriya A; Wulf A; Hindorff LA; Dowling N; Khoury MJ; Gwinn M Eur J Hum Genet; 2011 Oct; 19(10):1095-9. PubMed ID: 21610748 [TBL] [Abstract][Full Text] [Related]
4. Functional genomics of candidate genes derived from genome-wide association studies for five common neurological diseases. Guio-Vega GP; Forero DA Int J Neurosci; 2017 Feb; 127(2):118-123. PubMed ID: 26829381 [TBL] [Abstract][Full Text] [Related]
5. Mining Plant Genomic and Genetic Data Using the GnpIS Information System. Adam-Blondon AF; Alaux M; Durand S; Letellier T; Merceron G; Mohellibi N; Pommier C; Steinbach D; Alfama F; Amselem J; Charruaud D; Choisne N; Flores R; Guerche C; Jamilloux V; Kimmel E; Lapalu N; Loaec M; Michotey C; Quesneville H Methods Mol Biol; 2017; 1533():103-117. PubMed ID: 27987166 [TBL] [Abstract][Full Text] [Related]
6. Text mining biomedical literature for constructing gene regulatory networks. Song YL; Chen SS Interdiscip Sci; 2009 Sep; 1(3):179-86. PubMed ID: 20640836 [TBL] [Abstract][Full Text] [Related]
7. Network.assisted analysis to prioritize GWAS results: principles, methods and perspectives. Jia P; Zhao Z Hum Genet; 2014 Feb; 133(2):125-38. PubMed ID: 24122152 [TBL] [Abstract][Full Text] [Related]
8. Unsupervised discovery of information structure in biomedical documents. Kiela D; Guo Y; Stenius U; Korhonen A Bioinformatics; 2015 Apr; 31(7):1084-92. PubMed ID: 25411329 [TBL] [Abstract][Full Text] [Related]
9. Text mining in livestock animal science: introducing the potential of text mining to animal sciences. Sahadevan S; Hofmann-Apitius M; Schellander K; Tesfaye D; Fluck J; Friedrich CM J Anim Sci; 2012 Oct; 90(10):3666-76. PubMed ID: 22665627 [TBL] [Abstract][Full Text] [Related]
10. Airway Epithelial Expression Quantitative Trait Loci Reveal Genes Underlying Asthma and Other Airway Diseases. Luo W; Obeidat M; Di Narzo AF; Chen R; Sin DD; Paré PD; Hao K Am J Respir Cell Mol Biol; 2016 Feb; 54(2):177-87. PubMed ID: 26102239 [TBL] [Abstract][Full Text] [Related]
11. DISEASES: text mining and data integration of disease-gene associations. Pletscher-Frankild S; Pallejà A; Tsafou K; Binder JX; Jensen LJ Methods; 2015 Mar; 74():83-9. PubMed ID: 25484339 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide association studies (GWAS) and their importance in asthma. García-Sánchez A; Isidoro-García M; García-Solaesa V; Sanz C; Hernández-Hernández L; Padrón-Morales J; Lorente-Toledano F; Dávila I Allergol Immunopathol (Madr); 2015; 43(6):601-8. PubMed ID: 25433770 [TBL] [Abstract][Full Text] [Related]
13. A novel role for ciliary function in atopy: ADGRV1 and DNAH5 interactions. Sugier PE; Brossard M; Sarnowski C; Vaysse A; Morin A; Pain L; Margaritte-Jeannin P; Dizier MH; Cookson WOCM; Lathrop M; Moffatt MF; Laprise C; Demenais F; Bouzigon E J Allergy Clin Immunol; 2018 May; 141(5):1659-1667.e11. PubMed ID: 28927820 [TBL] [Abstract][Full Text] [Related]
14. Advances in genomic analysis of stroke: what have we learned and where are we headed? Lanktree MB; Dichgans M; Hegele RA Stroke; 2010 Apr; 41(4):825-32. PubMed ID: 20167918 [TBL] [Abstract][Full Text] [Related]
16. Assessing gene length biases in gene set analysis of Genome-Wide Association Studies. Jia P; Tian J; Zhao Z Int J Comput Biol Drug Des; 2010; 3(4):297-310. PubMed ID: 21297229 [TBL] [Abstract][Full Text] [Related]
17. Translating genome wide association study results to associations among common diseases: in silico study with an electronic medical record. Anand V; Rosenman MB; Downs SM Int J Med Inform; 2013 Sep; 82(9):864-74. PubMed ID: 23743324 [TBL] [Abstract][Full Text] [Related]
18. Unsupervised and self-supervised deep learning approaches for biomedical text mining. Nadif M; Role F Brief Bioinform; 2021 Mar; 22(2):1592-1603. PubMed ID: 33569575 [TBL] [Abstract][Full Text] [Related]
19. Use of genome-wide association studies for cancer research and drug repositioning. Zhang J; Jiang K; Lv L; Wang H; Shen Z; Gao Z; Wang B; Yang Y; Ye Y; Wang S PLoS One; 2015; 10(3):e0116477. PubMed ID: 25803826 [TBL] [Abstract][Full Text] [Related]
20. Discovering genes-diseases associations from specialized literature using the grid. Faro A; Giordano D; Maiorana F; Spampinato C IEEE Trans Inf Technol Biomed; 2009 Jul; 13(4):554-60. PubMed ID: 19273026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]