These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 26911543)
1. Amyloid Properties of Asparagine and Glutamine in Prion-like Proteins. Zhang Y; Man VH; Roland C; Sagui C ACS Chem Neurosci; 2016 May; 7(5):576-87. PubMed ID: 26911543 [TBL] [Abstract][Full Text] [Related]
2. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312 [TBL] [Abstract][Full Text] [Related]
3. The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains. Shattuck JE; Waechter AC; Ross ED Prion; 2017 Jul; 11(4):249-264. PubMed ID: 28665753 [TBL] [Abstract][Full Text] [Related]
4. Controlling the prion propensity of glutamine/asparagine-rich proteins. Paul KR; Ross ED Prion; 2015; 9(5):347-54. PubMed ID: 26555096 [TBL] [Abstract][Full Text] [Related]
5. Pathogenic polyglutamine tracts are potent inducers of spontaneous Sup35 and Rnq1 amyloidogenesis. Goehler H; Dröge A; Lurz R; Schnoegl S; Chernoff YO; Wanker EE PLoS One; 2010 Mar; 5(3):e9642. PubMed ID: 20224794 [TBL] [Abstract][Full Text] [Related]
6. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Michelitsch MD; Weissman JS Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11910-5. PubMed ID: 11050225 [TBL] [Abstract][Full Text] [Related]
7. Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid beta-peptide of amyloid plaques. Perutz MF; Pope BJ; Owen D; Wanker EE; Scherzinger E Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5596-600. PubMed ID: 11960015 [TBL] [Abstract][Full Text] [Related]
8. Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins. Halfmann R; Alberti S; Krishnan R; Lyle N; O'Donnell CW; King OD; Berger B; Pappu RV; Lindquist S Mol Cell; 2011 Jul; 43(1):72-84. PubMed ID: 21726811 [TBL] [Abstract][Full Text] [Related]
9. Short disordered protein segment regulates cross-species transmission of a yeast prion. Shida T; Kamatari YO; Yoda T; Yamaguchi Y; Feig M; Ohhashi Y; Sugita Y; Kuwata K; Tanaka M Nat Chem Biol; 2020 Jul; 16(7):756-765. PubMed ID: 32284601 [TBL] [Abstract][Full Text] [Related]
10. Peptide sequences converting polyglutamine into a prion in yeast. Odani W; Urata K; Okuda M; Okuma S; Koyama H; Pack CG; Fujiwara K; Nojima T; Kinjo M; Kawai-Noma S; Taguchi H FEBS J; 2015 Feb; 282(3):477-90. PubMed ID: 25406629 [TBL] [Abstract][Full Text] [Related]
11. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores. Zambrano R; Conchillo-Sole O; Iglesias V; Illa R; Rousseau F; Schymkowitz J; Sabate R; Daura X; Ventura S Nucleic Acids Res; 2015 Jul; 43(W1):W331-7. PubMed ID: 25977297 [TBL] [Abstract][Full Text] [Related]
13. Entropic Bristles Tune the Seeding Efficiency of Prion-Nucleating Fragments. Michiels E; Liu S; Gallardo R; Louros N; Mathelié-Guinlet M; Dufrêne Y; Schymkowitz J; Vorberg I; Rousseau F Cell Rep; 2020 Feb; 30(8):2834-2845.e3. PubMed ID: 32101755 [TBL] [Abstract][Full Text] [Related]
14. Emergence and evolution of yeast prion and prion-like proteins. An L; Fitzpatrick D; Harrison PM BMC Evol Biol; 2016 Jan; 16():24. PubMed ID: 26809710 [TBL] [Abstract][Full Text] [Related]
15. The complexity and implications of yeast prion domains. Du Z Prion; 2011; 5(4):311-6. PubMed ID: 22156731 [TBL] [Abstract][Full Text] [Related]
16. Sequence features governing aggregation or degradation of prion-like proteins. Cascarina SM; Paul KR; Machihara S; Ross ED PLoS Genet; 2018 Jul; 14(7):e1007517. PubMed ID: 30005071 [TBL] [Abstract][Full Text] [Related]
17. Compositional determinants of prion formation in yeast. Toombs JA; McCarty BR; Ross ED Mol Cell Biol; 2010 Jan; 30(1):319-32. PubMed ID: 19884345 [TBL] [Abstract][Full Text] [Related]
18. Pathologic polyglutamine aggregation begins with a self-poisoning polymer crystal. Kandola T; Venkatesan S; Zhang J; Lerbakken BT; Von Schulze A; Blanck JF; Wu J; Unruh JR; Berry P; Lange JJ; Box AC; Cook M; Sagui C; Halfmann R Elife; 2023 Nov; 12():. PubMed ID: 37921648 [TBL] [Abstract][Full Text] [Related]
19. A non-Q/N-rich prion domain of a foreign prion, [Het-s], can propagate as a prion in yeast. Taneja V; Maddelein ML; Talarek N; Saupe SJ; Liebman SW Mol Cell; 2007 Jul; 27(1):67-77. PubMed ID: 17612491 [TBL] [Abstract][Full Text] [Related]
20. The effects of amino acid composition on yeast prion formation and prion domain interactions. Ross ED; Toombs JA Prion; 2010; 4(2):60-5. PubMed ID: 20495349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]