These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26911568)

  • 41. Enhanced photoelectrochemical water splitting performance of TiO2 nanotube arrays coated with an ultrathin nitrogen-doped carbon film by molecular layer deposition.
    Tong X; Yang P; Wang Y; Qin Y; Guo X
    Nanoscale; 2014 Jun; 6(12):6692-700. PubMed ID: 24816496
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Visible Light Photodegradation of Formaldehyde over TiO
    Sahrin NT; Nawaz R; Fai Kait C; Lee SL; Wirzal MDH
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31936704
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A three-dimensional interconnected hierarchical FeOOH/TiO₂/ZnO nanostructural photoanode for enhancing the performance of photoelectrochemical water oxidation.
    Li Z; Feng S; Liu S; Li X; Wang L; Lu W
    Nanoscale; 2015 Dec; 7(45):19178-83. PubMed ID: 26523803
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO
    Nischk M; Mazierski P; Wei Z; Siuzdak K; Kouame NA; Kowalska E; Remita H; Zaleska-Medynska A
    Appl Surf Sci; 2016 Nov; 387():89-102. PubMed ID: 27917012
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical and Electrochemical Properties of Self-Organized TiO
    Fraoucene H; Sugiawati VA; Hatem D; Belkaid MS; Vacandio F; Eyraud M; Pasquinelli M; Djenizian T
    Front Chem; 2019; 7():66. PubMed ID: 30800655
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photoelectrochemical properties and the detection mechanism of Bi2WO6 nanosheet modified TiO2 nanotube arrays.
    Pang Y; Xu G; Zhang X; Lv J; Shi K; Zhai P; Xue Q; Wang X; Wu Y
    Dalton Trans; 2015 Oct; 44(40):17784-94. PubMed ID: 26400480
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrochemical degradation of dye on TiO
    Gui L; Peng J; Li P; Peng R; Yu P; Luo Y
    Chemosphere; 2019 Nov; 235():1189-1196. PubMed ID: 31561310
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination.
    Hernández S; Cauda V; Chiodoni A; Dallorto S; Sacco A; Hidalgo D; Celasco E; Pirri CF
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12153-67. PubMed ID: 24983821
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced photoelectrochemical cell property from alpha-Fe2O3 nanoparticle decoration on vertically grown TiO2 nanotubes arrays.
    Mao A; Meng X; Kim MS; Yu JB; Han GY; Park JH
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7290-3. PubMed ID: 22103179
    [TBL] [Abstract][Full Text] [Related]  

  • 50. One-Dimensional Self-Standing TiO
    Zhang J; Pauporté T
    Chemphyschem; 2015 Sep; 16(13):2836-2841. PubMed ID: 26239379
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A facile strategy to fabricate high-quality single crystalline brookite TiO₂ nanoarrays and their photoelectrochemical properties.
    Choi M; Yong K
    Nanoscale; 2014 Nov; 6(22):13900-9. PubMed ID: 25308281
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates.
    Sun Y; Riley DJ; Ashfold MN
    J Phys Chem B; 2006 Aug; 110(31):15186-92. PubMed ID: 16884233
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Photoelectrochemical H
    Mohajernia S; Hejazi S; Mazare A; Nguyen NT; Schmuki P
    Chemistry; 2017 Sep; 23(50):12406-12411. PubMed ID: 28654181
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Complex ZnO-TiO
    Vasilaki E; Vamvakaki M; Katsarakis N
    Langmuir; 2018 Aug; 34(31):9122-9132. PubMed ID: 30021443
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation and UV Photoelectric Properties of Aligned ZnO-TiO
    Zhou M; Wu B; Zhang X; Cao S; Ma P; Wang K; Fan Z; Su M
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38490-38498. PubMed ID: 32846492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A "signal-on" photoelectrochemical aptasensor based on graphene quantum dots-sensitized TiO
    Qin X; Wang Q; Geng L; Shu X; Wang Y
    Talanta; 2019 May; 197():28-35. PubMed ID: 30771936
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Formation of a CdO layer on CdS/ZnO nanorod arrays to enhance their photoelectrochemical performance.
    Van TK; Pham LQ; Kim DY; Zheng JY; Kim D; Pawar AU; Kang YS
    ChemSusChem; 2014 Dec; 7(12):3505-12. PubMed ID: 25324138
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Joint Effects of Photoactive TiO2 and Fluoride-Doping on SnO2 Inverse Opal Nanoarchitecture for Solar Water Splitting.
    Gun Y; Song GY; Quy VH; Heo J; Lee H; Ahn KS; Kang SH
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20292-303. PubMed ID: 26322646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photoelectrochemical aptasensing of ofloxacin based on the use of a TiO
    Qin X; Geng L; Wang Q; Wang Y
    Mikrochim Acta; 2019 Jun; 186(7):430. PubMed ID: 31187249
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improved tribocorrosion performance of bio-functionalized TiO
    Alves SA; Rossi AL; Ribeiro AR; Toptan F; Pinto AM; Shokuhfar T; Celis JP; Rocha LA
    J Mech Behav Biomed Mater; 2018 Apr; 80():143-154. PubMed ID: 29414470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.