BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26911707)

  • 1. Identification of the Hydrogen Uptake Gene Cluster for Chemolithoautotrophic Growth and Symbiosis Hydrogen Uptake in Bradyrhizobium Diazoefficiens.
    Masuda S; Saito M; Sugawara C; Itakura M; Eda S; Minamisawa K
    Microbes Environ; 2016; 31(1):76-8. PubMed ID: 26911707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by
    Speck JJ; James EK; Sugawara M; Sadowsky MJ; Gyaneshwar P
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31562172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classical Soybean (
    Alaswad AA; Oehrle NW; Krishnan HB
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30832430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic divergence of bradyrhizobium strains nodulating soybeans as revealed by multilocus sequence analysis of genes inside and outside the symbiosis island.
    Zhang XX; Guo HJ; Wang R; Sui XH; Zhang YM; Wang ET; Tian CF; Chen WX
    Appl Environ Microbiol; 2014 May; 80(10):3181-90. PubMed ID: 24632260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symbiosis island shuffling with abundant insertion sequences in the genomes of extra-slow-growing strains of soybean bradyrhizobia.
    Iida T; Itakura M; Anda M; Sugawara M; Isawa T; Okubo T; Sato S; Chiba-Kakizaki K; Minamisawa K
    Appl Environ Microbiol; 2015 Jun; 81(12):4143-54. PubMed ID: 25862225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolomic Profiling of Bradyrhizobium diazoefficiens-Induced Root Nodules Reveals Both Host Plant-Specific and Developmental Signatures.
    Lardi M; Murset V; Fischer HM; Mesa S; Ahrens CH; Zamboni N; Pessi G
    Int J Mol Sci; 2016 May; 17(6):. PubMed ID: 27240350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bradyrhizobium diazoefficiens Requires Chemical Chaperones To Cope with Osmotic Stress during Soybean Infection.
    Ledermann R; Emmenegger B; Couzigou JM; Zamboni N; Kiefer P; Vorholt JA; Fischer HM
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-luciferase assay and siRNA silencing for nodD1 to study the competitiveness of Bradyrhizobium diazoefficiens USDA110 in soybean nodulation.
    Ramongolalaina C
    Microbiol Res; 2020 Aug; 237():126488. PubMed ID: 32408049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic Characterization of
    Franck S; Strodtman KN; Qiu J; Emerich DW
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Bradyrhizobium japonicum Ferrous Iron Transporter FeoAB Is Required for Ferric Iron Utilization in Free Living Aerobic Cells and for Symbiosis.
    Sankari S; O'Brian MR
    J Biol Chem; 2016 Jul; 291(30):15653-62. PubMed ID: 27288412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biohydrogen utilization in legume-rhizobium symbiosis reveals a novel mechanism of accelerated tetrachlorobiphenyl transformation.
    Xu Y; Teng Y; Wang X; Wang H; Li Y; Ren W; Zhao L; Wei M; Luo Y
    Bioresour Technol; 2024 Jul; 404():130918. PubMed ID: 38823562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computationally Reconstructed Interactome of
    Ma JX; Yang Y; Li G; Ma BG
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The significance of exometabolites in the formation and operation of the soybean-rhizobium symbiosis].
    Kirichenko EV; Titova LV; Kots' SIa
    Prikl Biokhim Mikrobiol; 2004; 40(5):567-70. PubMed ID: 15553789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic Characterization of
    Strodtman KN; Frank S; Stevenson S; Thelen JJ; Emerich DW
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bradyrhizobium diazoefficiens USDA 110- Glycine max Interactome Provides Candidate Proteins Associated with Symbiosis.
    Zhang L; Liu JY; Gu H; Du Y; Zuo JF; Zhang Z; Zhang M; Li P; Dunwell JM; Cao Y; Zhang Z; Zhang YM
    J Proteome Res; 2018 Sep; 17(9):3061-3074. PubMed ID: 30091610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hopanoid lipids promote soybean
    Pan H; Shim A; Lubin MB; Belin BJ
    mBio; 2024 Apr; 15(4):e0247823. PubMed ID: 38445860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divergent metabolic adjustments in nodules are indispensable for efficient N
    Sulieman S; Kusano M; Ha CV; Watanabe Y; Abdalla MA; Abdelrahman M; Kobayashi M; Saito K; Mühling KH; Tran LP
    Plant Sci; 2019 Dec; 289():110249. PubMed ID: 31623782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules.
    Delmotte N; Ahrens CH; Knief C; Qeli E; Koch M; Fischer HM; Vorholt JA; Hennecke H; Pessi G
    Proteomics; 2010 Apr; 10(7):1391-400. PubMed ID: 20104621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A role for Bradyrhizobium japonicum ECF16 sigma factor EcfS in the formation of a functional symbiosis with soybean.
    Stockwell SB; Reutimann L; Guerinot ML
    Mol Plant Microbe Interact; 2012 Jan; 25(1):119-28. PubMed ID: 21879796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of phytoregulator reglag on symbiotic properties of Bradyrhizobium japonicum 634b].
    Kyrychenko OV; Tytova LV; Zhemoĭda AV; Komisarenko AH; Daskaliuk TM
    Mikrobiol Z; 2008; 70(1):17-24. PubMed ID: 18416150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.