These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 26911811)
1. Extracting information from the text of electronic medical records to improve case detection: a systematic review. Ford E; Carroll JA; Smith HE; Scott D; Cassell JA J Am Med Inform Assoc; 2016 Sep; 23(5):1007-15. PubMed ID: 26911811 [TBL] [Abstract][Full Text] [Related]
2. [A customized method for information extraction from unstructured text data in the electronic medical records]. Bao XY; Huang WJ; Zhang K; Jin M; Li Y; Niu CZ Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):256-263. PubMed ID: 29643524 [TBL] [Abstract][Full Text] [Related]
3. Enhancing ICD-Code-Based Case Definition for Heart Failure Using Electronic Medical Record Data. Xu Y; Lee S; Martin E; D'souza AG; Doktorchik CTA; Jiang J; Lee S; Eastwood CA; Fine N; Hemmelgarn B; Todd K; Quan H J Card Fail; 2020 Jul; 26(7):610-617. PubMed ID: 32304875 [TBL] [Abstract][Full Text] [Related]
4. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
5. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records. Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698 [TBL] [Abstract][Full Text] [Related]
6. Incorporating natural language processing to improve classification of axial spondyloarthritis using electronic health records. Zhao SS; Hong C; Cai T; Xu C; Huang J; Ermann J; Goodson NJ; Solomon DH; Cai T; Liao KP Rheumatology (Oxford); 2020 May; 59(5):1059-1065. PubMed ID: 31535693 [TBL] [Abstract][Full Text] [Related]
7. Development of algorithms to identify individuals with Neurofibromatosis type 1 within administrative data and electronic medical records in Ontario, Canada. Barnett C; Candido E; Chen B; Pequeno P; Parkin PC; Tu K Orphanet J Rare Dis; 2022 Aug; 17(1):321. PubMed ID: 36028856 [TBL] [Abstract][Full Text] [Related]
9. Validation of Case Finding Algorithms for Hepatocellular Cancer From Administrative Data and Electronic Health Records Using Natural Language Processing. Sada Y; Hou J; Richardson P; El-Serag H; Davila J Med Care; 2016 Feb; 54(2):e9-14. PubMed ID: 23929403 [TBL] [Abstract][Full Text] [Related]
10. A rule-based electronic phenotyping algorithm for detecting clinically relevant cardiovascular disease cases. Esteban S; Rodríguez Tablado M; Ricci RI; Terrasa S; Kopitowski K BMC Res Notes; 2017 Jul; 10(1):281. PubMed ID: 28705240 [TBL] [Abstract][Full Text] [Related]
11. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records. Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705 [TBL] [Abstract][Full Text] [Related]
12. Identifying Diabetes Related-Complications in a Real-World Free-Text Electronic Medical Records in Hebrew Using Natural Language Processing Techniques. Saban M; Lutski M; Zucker I; Uziel M; Ben-Moshe D; Israel A; Vinker S; Golan-Cohen A; Laufer I; Green I; Eldor R; Merzon E J Diabetes Sci Technol; 2024 Jan; ():19322968241228555. PubMed ID: 38288672 [TBL] [Abstract][Full Text] [Related]
13. Clinical Text Data Categorization and Feature Extraction Using Medical-Fissure Algorithm and Neg-Seq Algorithm. Pagad NS; N P; Almuzaini KK; Maheshwari M; Gangodkar D; Shukla P; Alhassan M Comput Intell Neurosci; 2022; 2022():5759521. PubMed ID: 35295284 [TBL] [Abstract][Full Text] [Related]
14. Automatic generation of case-detection algorithms to identify children with asthma from large electronic health record databases. Afzal Z; Engelkes M; Verhamme KM; Janssens HM; Sturkenboom MC; Kors JA; Schuemie MJ Pharmacoepidemiol Drug Saf; 2013 Aug; 22(8):826-33. PubMed ID: 23592573 [TBL] [Abstract][Full Text] [Related]
15. Evaluating electronic health record data sources and algorithmic approaches to identify hypertensive individuals. Teixeira PL; Wei WQ; Cronin RM; Mo H; VanHouten JP; Carroll RJ; LaRose E; Bastarache LA; Rosenbloom ST; Edwards TL; Roden DM; Lasko TA; Dart RA; Nikolai AM; Peissig PL; Denny JC J Am Med Inform Assoc; 2017 Jan; 24(1):162-171. PubMed ID: 27497800 [TBL] [Abstract][Full Text] [Related]
16. Extracting Structured Genotype Information from Free-Text HLA Reports Using a Rule-Based Approach. Lee KH; Kim HJ; Kim YJ; Kim JH; Song EY J Korean Med Sci; 2020 Mar; 35(12):e78. PubMed ID: 32233158 [TBL] [Abstract][Full Text] [Related]
17. Using clinical text to refine unspecific condition codes in Dutch general practitioner EHR data. Seinen TM; Kors JA; van Mulligen EM; Fridgeirsson EA; Verhamme KM; Rijnbeek PR Int J Med Inform; 2024 Sep; 189():105506. PubMed ID: 38820647 [TBL] [Abstract][Full Text] [Related]
18. A method for cohort selection of cardiovascular disease records from an electronic health record system. Abrahão MTF; Nobre MRC; Gutierrez MA Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342 [TBL] [Abstract][Full Text] [Related]
19. The validity of electronic health data for measuring smoking status: a systematic review and meta-analysis. Haque MA; Gedara MLB; Nickel N; Turgeon M; Lix LM BMC Med Inform Decis Mak; 2024 Feb; 24(1):33. PubMed ID: 38308231 [TBL] [Abstract][Full Text] [Related]
20. Automated feature selection of predictors in electronic medical records data. Gronsbell J; Minnier J; Yu S; Liao K; Cai T Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]