BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 26911859)

  • 1. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding.
    Zhang X; Gao Y; Chen Y; Hu M
    Sci Rep; 2016 Feb; 6():22011. PubMed ID: 26911859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The unexpected non-monotonic inter-layer bonding dependence of the thermal conductivity of bilayered boron nitride.
    Gao Y; Zhang X; Jing Y; Hu M
    Nanoscale; 2015 Apr; 7(16):7143-50. PubMed ID: 25811773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and Mechanical Behavior of Nanocomposite Superstructures from Interlayer Bonding in Twisted Bilayer Graphene.
    Chen M; Muniz AR; Maroudas D
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28898-28908. PubMed ID: 30088413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon.
    Zhang X; Bao H; Hu M
    Nanoscale; 2015 Apr; 7(14):6014-22. PubMed ID: 25762032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon thermal conduction in a graphene-C
    Han D; Wang X; Ding W; Chen Y; Zhang J; Xin G; Cheng L
    Nanotechnology; 2019 Feb; 30(7):075403. PubMed ID: 30524108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disparate strain response of the thermal transport properties of bilayer penta-graphene as compared to that of monolayer penta-graphene.
    Sun Z; Yuan K; Zhang X; Qin G; Gong X; Tang D
    Phys Chem Chem Phys; 2019 Jul; 21(28):15647-15655. PubMed ID: 31268444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilayer Graphene-Based Thermal Rectifier with Interlayer Gradient Functionalization.
    Wei A; Lahkar S; Li X; Li S; Ye H
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45180-45188. PubMed ID: 31746588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.
    Wei N; Xu L; Wang HQ; Zheng JC
    Nanotechnology; 2011 Mar; 22(10):105705. PubMed ID: 21289391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of vacancy defects on the interfacial thermal resistance of partially overlapped bilayer graphene.
    Wang BC; Cao Q; Shao W; Cui Z
    Phys Chem Chem Phys; 2022 Mar; 24(9):5546-5554. PubMed ID: 35174847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral and flexural phonon thermal transport in graphene and stanene bilayers.
    Hong Y; Zhu C; Ju M; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2017 Mar; 19(9):6554-6562. PubMed ID: 28197566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conductivity of twisted bilayer graphene.
    Li H; Ying H; Chen X; Nika DL; Cocemasov AI; Cai W; Balandin AA; Chen S
    Nanoscale; 2014 Nov; 6(22):13402-8. PubMed ID: 25273673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic thermal transport in twisted bilayer graphene.
    Liu W; Hong Y; Zhang J; Yue Y
    Phys Chem Chem Phys; 2022 Sep; 24(36):21722-21728. PubMed ID: 36082747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.
    Khadem MH; Wemhoff AP
    J Chem Phys; 2013 Feb; 138(8):084708. PubMed ID: 23464173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of the thermal conductivity of a graphene/hBN heterobilayer via interlayer sp
    Iwata T; Shintani K
    Phys Chem Chem Phys; 2018 Feb; 20(7):5217-5226. PubMed ID: 29399688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal conductivity of graphene with defects induced by electron beam irradiation.
    Malekpour H; Ramnani P; Srinivasan S; Balasubramanian G; Nika DL; Mulchandani A; Lake RK; Balandin AA
    Nanoscale; 2016 Aug; 8(30):14608-16. PubMed ID: 27432290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions.
    Zhou J; Li H; Tang HK; Shao L; Han K; Shen X
    ACS Omega; 2022 Feb; 7(7):5844-5852. PubMed ID: 35224345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interlayer electrical resistivity of rotated graphene layers studied by in-situ scanning electron microscopy.
    Li H; Wei X; Wu G; Gao S; Chen Q; Peng LM
    Ultramicroscopy; 2018 Oct; 193():90-96. PubMed ID: 29957331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disparate Strain Dependent Thermal Conductivity of Two-dimensional Penta-Structures.
    Liu H; Qin G; Lin Y; Hu M
    Nano Lett; 2016 Jun; 16(6):3831-42. PubMed ID: 27228130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced Thermal Transport in the Graphene/MoS
    Srinivasan S; Balasubramanian G
    Langmuir; 2018 Mar; 34(10):3326-3335. PubMed ID: 29429341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity of graphene under biaxial strain: an analysis of spectral phonon properties.
    K V S D; Kannam SK; Sathian SP
    Nanotechnology; 2020 Aug; 31(34):345703. PubMed ID: 32369790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.