These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26912452)

  • 1. Crossroad between linear and nonlinear transcription concepts in the discovery of next-generation sequencing systems-based anticancer therapies.
    Roukos DH
    Drug Discov Today; 2016 Apr; 21(4):663-73. PubMed ID: 26912452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting dynamics of subclones of GI, liver and pancreatic cancers.
    Ziogas DE; Glantzounis G; Liakakos T; Roukos DH
    Expert Rev Gastroenterol Hepatol; 2016 Jul; 10(7):773-6. PubMed ID: 27143511
    [No Abstract]   [Full Text] [Related]  

  • 3. Genome network medicine: innovation to overcome huge challenges in cancer therapy.
    Roukos DH
    Wiley Interdiscip Rev Syst Biol Med; 2014; 6(2):201-8. PubMed ID: 24318985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive intra-individual genomic and transcriptional heterogeneity: Evidence-based Colorectal Cancer Precision Medicine.
    Kyrochristos ID; Roukos DH
    Cancer Treat Rev; 2019 Nov; 80():101894. PubMed ID: 31518831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic genome and transcriptional network-based biomarkers and drugs: precision in breast cancer therapy.
    Kyrochristos ID; Ziogas DE; Roukos DH
    Med Res Rev; 2019 May; 39(3):1205-1227. PubMed ID: 30417574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal diversification of intrapatient genomic clones and early drug development concepts realize the roadmap of precision cancer medicine.
    Roukos DH
    Drug Discov Today; 2017 Aug; 22(8):1148-1164. PubMed ID: 28400153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disrupting cancer cells' biocircuits with interactome-based drugs: is 'clinical' innovation realistic?
    Roukos DH
    Expert Rev Proteomics; 2012 Aug; 9(4):349-53. PubMed ID: 22967071
    [No Abstract]   [Full Text] [Related]  

  • 8. Implementing Genome-Driven Oncology.
    Hyman DM; Taylor BS; Baselga J
    Cell; 2017 Feb; 168(4):584-599. PubMed ID: 28187282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of targeted therapies in cancer: opportunities and challenges in the clinic.
    Santhosh S; Kumar P; Ramprasad V; Chaudhuri A
    Future Oncol; 2015; 11(2):279-93. PubMed ID: 25591839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The opportunities and challenges of personalized genome-based molecular therapies for cancer: targets, technologies, and molecular chaperones.
    Workman P
    Cancer Chemother Pharmacol; 2003 Jul; 52 Suppl 1():S45-56. PubMed ID: 12819933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Somatic alterations as the basis for resistance to targeted therapies.
    Blair BG; Bardelli A; Park BH
    J Pathol; 2014 Jan; 232(2):244-54. PubMed ID: 24114654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of tumor heterogeneity in the development of drug resistance: A call for precision therapy.
    Wu D; Wang DC; Cheng Y; Qian M; Zhang M; Shen Q; Wang X
    Semin Cancer Biol; 2017 Feb; 42():13-19. PubMed ID: 27840278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances and current issues in single-cell sequencing of tumors.
    Sun HJ; Chen J; Ni B; Yang X; Wu YZ
    Cancer Lett; 2015 Aug; 365(1):1-10. PubMed ID: 26003306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using high-throughput sequencing transcriptome data for INDEL detection: challenges for cancer drug discovery.
    Wajnberg G; Passetti F
    Expert Opin Drug Discov; 2016; 11(3):257-68. PubMed ID: 26787005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges in the Discovery of Novel Therapeutic Agents in Cancer.
    Nagaraju GP; Kamal MA
    Curr Drug Metab; 2019; 20(12):931-932. PubMed ID: 31989914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing tumor heterogeneity and emergence mutations using next-generation sequencing for overcoming cancer drugs resistance.
    Roukos D; Batsis C; Baltogiannis G
    Expert Rev Anticancer Ther; 2012 Oct; 12(10):1245-8. PubMed ID: 23176613
    [No Abstract]   [Full Text] [Related]  

  • 17. Implementing precision medicine initiatives in the clinic: a new paradigm in drug development.
    Hollebecque A; Massard C; Soria JC
    Curr Opin Oncol; 2014 May; 26(3):340-6. PubMed ID: 24709975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Front-line drug discovery system for cancer].
    Mizukami T
    Gan To Kagaku Ryoho; 2008 Dec; 35(13):2293-300. PubMed ID: 19098393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance.
    Shapira A; Livney YD; Broxterman HJ; Assaraf YG
    Drug Resist Updat; 2011 Jun; 14(3):150-63. PubMed ID: 21330184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting FGFR Signaling in Cancer.
    Touat M; Ileana E; Postel-Vinay S; André F; Soria JC
    Clin Cancer Res; 2015 Jun; 21(12):2684-94. PubMed ID: 26078430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.