These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26912601)

  • 1. A chronic neural interface to the macaque dorsal column nuclei.
    Richardson AG; Weigand PK; Sritharan SY; Lucas TH
    J Neurophysiol; 2016 May; 115(5):2255-64. PubMed ID: 26912601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methodological considerations for a chronic neural interface with the cuneate nucleus of macaques.
    Suresh AK; Winberry JE; Versteeg C; Chowdhury R; Tomlinson T; Rosenow JM; Miller LE; Bensmaia SJ
    J Neurophysiol; 2017 Dec; 118(6):3271-3281. PubMed ID: 28904101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new type of recording chamber with an easy-to-exchange microdrive array for chronic recordings in macaque monkeys.
    Galashan FO; Rempel HC; Meyer A; Gruber-Dujardin E; Kreiter AK; Wegener D
    J Neurophysiol; 2011 Jun; 105(6):3092-105. PubMed ID: 21451061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-unit stability using chronically implanted multielectrode arrays.
    Dickey AS; Suminski A; Amit Y; Hatsopoulos NG
    J Neurophysiol; 2009 Aug; 102(2):1331-9. PubMed ID: 19535480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal responses in rostral trigeminal brain-stem nuclei of macaque monkeys after chronic trigeminal tractotomy.
    Young RF; Perryman KM
    J Neurosurg; 1986 Oct; 65(4):508-16. PubMed ID: 3760961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-long term stability of single units using chronically implanted multielectrode arrays.
    Vaidya M; Dickey A; Best MD; Coles J; Balasubramanian K; Suminski AJ; Hatsopoulos NG
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4872-5. PubMed ID: 25571083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation and functional mapping of surface potentials in the rat dorsal column nuclei.
    Loutit AJ; Maddess T; Redmond SJ; Morley JW; Stuart GJ; Potas JR
    J Physiol; 2017 Jul; 595(13):4507-4524. PubMed ID: 28333372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical influences on sizes and rapid plasticity of tactile receptive fields in the dorsal column nuclei.
    Wang X; Wall JT
    J Comp Neurol; 2005 Aug; 489(2):241-8. PubMed ID: 15984000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Somatosensory evoked potentials (SEPs) and cortical single unit responses elicited by mechanical tactile stimuli in awake monkeys.
    Gardner EP; Hämäläinen HA; Warren S; Davis J; Young W
    Electroencephalogr Clin Neurophysiol; 1984 Dec; 58(6):537-52. PubMed ID: 6209104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nociceptive stimuli induce changes in somatosensory responses of rat dorsal column nuclei neurons.
    Costa-García M; Nuñez A
    Brain Res; 2004 Oct; 1025(1-2):169-76. PubMed ID: 15464757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal Patterns of Individual Neuronal Firing in Rat Dorsal Column Nuclei Provide Information Required for Somatosensory Discrimination.
    Shishido SI; Toda T
    Tohoku J Exp Med; 2017 Oct; 243(2):115-126. PubMed ID: 29070782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implantable computer-controlled adaptive multielectrode positioning system.
    Ferrea E; Suriya-Arunroj L; Hoehl D; Thomas U; Gail A
    J Neurophysiol; 2018 Apr; 119(4):1471-1484. PubMed ID: 29187552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somatosensory effects on neurons in dorsal cochlear nucleus.
    Young ED; Nelken I; Conley RA
    J Neurophysiol; 1995 Feb; 73(2):743-65. PubMed ID: 7760132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulin-like growth factor I modifies electrophysiological properties of rat brain stem neurons.
    Nuñez A; Carro E; Torres-Aleman I
    J Neurophysiol; 2003 Jun; 89(6):3008-17. PubMed ID: 12612011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical influences on rapid brainstem plasticity.
    Wang X; Wall JT
    Brain Res; 2006 Jun; 1095(1):73-84. PubMed ID: 16697977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systematic analysis of neurons with large somatosensory receptive fields covering multiple body regions in the secondary somatosensory area of macaque monkeys.
    Taoka M; Toda T; Hihara S; Tanaka M; Iriki A; Iwamura Y
    J Neurophysiol; 2016 Nov; 116(5):2152-2162. PubMed ID: 27559139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of trigeminal brain stem neurons and the digastric muscle to tooth-pulp stimulation in awake cats.
    Boissonade FM; Matthews B
    J Neurophysiol; 1993 Jan; 69(1):174-86. PubMed ID: 8433129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ventral intraparietal area of the macaque: congruent visual and somatic response properties.
    Duhamel JR; Colby CL; Goldberg ME
    J Neurophysiol; 1998 Jan; 79(1):126-36. PubMed ID: 9425183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capsaicin-induced rapid receptive field reorganization in cuneate neurons.
    Pettit MJ; Schwark HD
    J Neurophysiol; 1996 Mar; 75(3):1117-25. PubMed ID: 8867122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.