These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26912664)

  • 21. AMPA, NMDA and kainate glutamate receptor subunits are expressed in human peripheral blood mononuclear cells (PBMCs) where the expression of GluK4 is altered by pregnancy and GluN2D by depression in pregnant women.
    Bhandage AK; Jin Z; Hellgren C; Korol SV; Nowak K; Williamsson L; Sundström-Poromaa I; Birnir B
    J Neuroimmunol; 2017 Apr; 305():51-58. PubMed ID: 28284346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of ionotropic glutamate receptors, AMPA, kainite and NMDA, in the pigeon retina.
    Atoji Y
    Exp Eye Res; 2015 Jul; 136():72-7. PubMed ID: 25983186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutational Analysis and Modeling of Negative Allosteric Modulator Binding Sites in AMPA Receptors.
    Stenum-Berg C; Musgaard M; Chavez-Abiega S; Thisted CL; Barrella L; Biggin PC; Kristensen AS
    Mol Pharmacol; 2019 Dec; 96(6):835-850. PubMed ID: 31582576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression, subunit composition, and function of AMPA-type glutamate receptors are changed in activated microglia; possible contribution of GluA2 (GluR-B)-deficiency under pathological conditions.
    Beppu K; Kosai Y; Kido MA; Akimoto N; Mori Y; Kojima Y; Fujita K; Okuno Y; Yamakawa Y; Ifuku M; Shinagawa R; Nabekura J; Sprengel R; Noda M
    Glia; 2013 Jun; 61(6):881-91. PubMed ID: 23468421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monaural conductive hearing loss alters the expression of the GluA3 AMPA and glycine receptor α1 subunits in bushy and fusiform cells of the cochlear nucleus.
    Wang H; Yin G; Rogers K; Miralles C; De Blas AL; Rubio ME
    Neuroscience; 2011 Dec; 199():438-51. PubMed ID: 22044924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AMPA receptor and metabotropic glutamate receptor 1 adaptations in the nucleus accumbens core during incubation of methamphetamine craving.
    Murray CH; Loweth JA; Milovanovic M; Stefanik MT; Caccamise AJ; Dolubizno H; Funke JR; Foster Olive M; Wolf ME
    Neuropsychopharmacology; 2019 Aug; 44(9):1534-1541. PubMed ID: 31146278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and Affinity of Two Bicyclic Glutamate Analogues at AMPA and Kainate Receptors.
    Møllerud S; Pinto A; Marconi L; Frydenvang K; Thorsen TS; Laulumaa S; Venskutonytė R; Winther S; Moral AMC; Tamborini L; Conti P; Pickering DS; Kastrup JS
    ACS Chem Neurosci; 2017 Sep; 8(9):2056-2064. PubMed ID: 28691798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel Regulation of the Synthesis of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Subunit GluA1 by Carnitine Palmitoyltransferase 1C (CPT1C) in the Hippocampus.
    Fadó R; Soto D; Miñano-Molina AJ; Pozo M; Carrasco P; Yefimenko N; Rodríguez-Álvarez J; Casals N
    J Biol Chem; 2015 Oct; 290(42):25548-60. PubMed ID: 26338711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stargazin Modulation of AMPA Receptors.
    Shaikh SA; Dolino DM; Lee G; Chatterjee S; MacLean DM; Flatebo C; Landes CF; Jayaraman V
    Cell Rep; 2016 Oct; 17(2):328-335. PubMed ID: 27705782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus.
    Xie M; Yan J; He C; Yang L; Tan G; Li C; Hu Z; Wang J
    Behav Brain Res; 2015 Jun; 286():64-70. PubMed ID: 25732956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of modal activation of GluA3 receptors.
    Poon K; Ahmed AH; Nowak LM; Oswald RE
    Mol Pharmacol; 2011 Jul; 80(1):49-59. PubMed ID: 21464198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PORCN Negatively Regulates AMPAR Function Independently of Subunit Composition and the Amino-Terminal and Carboxy-Terminal Domains of AMPARs.
    Wei M; Wang M; Wang J; Su F; Wang Y; Sun M; Wang S; Liu M; Wang H; Lu M; Li W; Gong Y; Yang L; Zhang C
    Front Cell Dev Biol; 2020; 8():829. PubMed ID: 32984326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chronic antidepressant treatments induce a time-dependent up-regulation of AMPA receptor subunit protein levels.
    Barbon A; Caracciolo L; Orlandi C; Musazzi L; Mallei A; La Via L; Bonini D; Mora C; Tardito D; Gennarelli M; Racagni G; Popoli M; Barlati S
    Neurochem Int; 2011 Nov; 59(6):896-905. PubMed ID: 21839792
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells.
    Rubio ME; Matsui K; Fukazawa Y; Kamasawa N; Harada H; Itakura M; Molnár E; Abe M; Sakimura K; Shigemoto R
    Brain Struct Funct; 2017 Nov; 222(8):3375-3393. PubMed ID: 28397107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prolonged positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors induces calpain-mediated PSD-95/Dlg/ZO-1 protein degradation and AMPA receptor down-regulation in cultured hippocampal slices.
    Jourdi H; Lu X; Yanagihara T; Lauterborn JC; Bi X; Gall CM; Baudry M
    J Pharmacol Exp Ther; 2005 Jul; 314(1):16-26. PubMed ID: 15784649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues.
    Burnashev N; Villarroel A; Sakmann B
    J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):165-73. PubMed ID: 8910205
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dominance of the lurcher mutation in heteromeric kainate and AMPA receptor channels.
    Schwarz MK; Pawlak V; Osten P; Mack V; Seeburg PH; Köhr G
    Eur J Neurosci; 2001 Sep; 14(5):861-8. PubMed ID: 11576190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localization of AMPA, kainate, and NMDA receptor mRNAs in the pigeon cerebellum.
    Atoji Y; Sarkar S
    J Chem Neuroanat; 2019 Jul; 98():71-79. PubMed ID: 30978490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of GluA1 in central nervous system disorders.
    Zhang J; Abdullah JM
    Rev Neurosci; 2013; 24(5):499-505. PubMed ID: 24077616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tweaking Subtype Selectivity and Agonist Efficacy at (S)-2-Amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propionic acid (AMPA) Receptors in a Small Series of BnTetAMPA Analogues.
    Wang SY; Larsen Y; Navarrete CV; Jensen AA; Nielsen B; Al-Musaed A; Frydenvang K; Kastrup JS; Pickering DS; Clausen RP
    J Med Chem; 2016 Mar; 59(5):2244-54. PubMed ID: 26862980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.