These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 26912895)

  • 1. Sequential ionic and conformational signaling by calcium channels drives neuronal gene expression.
    Li B; Tadross MR; Tsien RW
    Science; 2016 Feb; 351(6275):863-7. PubMed ID: 26912895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired chromaffin cell excitability and exocytosis in autistic Timothy syndrome TS2-neo mouse rescued by L-type calcium channel blockers.
    Calorio C; Gavello D; Guarina L; Salio C; Sassoè-Pognetto M; Riganti C; Bianchi FT; Hofer NT; Tuluc P; Obermair GJ; Defilippi P; Balzac F; Turco E; Bett GC; Rasmusson RL; Carbone E
    J Physiol; 2019 Mar; 597(6):1705-1733. PubMed ID: 30629744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular endothelial growth factor (VEGF) signaling regulates hippocampal neurons by elevation of intracellular calcium and activation of calcium/calmodulin protein kinase II and mammalian target of rapamycin.
    Kim BW; Choi M; Kim YS; Park H; Lee HR; Yun CO; Kim EJ; Choi JS; Kim S; Rhim H; Kaang BK; Son H
    Cell Signal; 2008 Apr; 20(4):714-25. PubMed ID: 18221855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related working memory impairment is correlated with increases in the L-type calcium channel protein alpha1D (Cav1.3) in area CA1 of the hippocampus and both are ameliorated by chronic nimodipine treatment.
    Veng LM; Mesches MH; Browning MD
    Brain Res Mol Brain Res; 2003 Feb; 110(2):193-202. PubMed ID: 12591156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion occupancy of the channel pore is critical for triggering excitation-transcription (ET) coupling.
    Servili E; Trus M; Atlas D
    Cell Calcium; 2019 Dec; 84():102102. PubMed ID: 31733625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the dominant role of Cav1 channels in signalling to the nucleus.
    Ma H; Cohen S; Li B; Tsien RW
    Biosci Rep; 2012 Dec; 33(1):97-101. PubMed ID: 23088728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced oligodendrocyte maturation and myelination in a mouse model of Timothy syndrome.
    Cheli VT; Santiago González DA; Zamora NN; Lama TN; Spreuer V; Rasmusson RL; Bett GC; Panagiotakos G; Paez PM
    Glia; 2018 Nov; 66(11):2324-2339. PubMed ID: 30151840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevated basal transcription can underlie timothy channel association with autism related disorders.
    Servili E; Trus M; Sajman J; Sherman E; Atlas D
    Prog Neurobiol; 2020 Aug; 191():101820. PubMed ID: 32437834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular mechanisms of ventricular arrhythmias in a mouse model of Timothy syndrome (long QT syndrome 8).
    Drum BM; Dixon RE; Yuan C; Cheng EP; Santana LF
    J Mol Cell Cardiol; 2014 Jan; 66():63-71. PubMed ID: 24215710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timothy syndrome iPSC modeling.
    Bekdash R; Klein AD; Yazawa M
    Mol Cell Neurosci; 2020 Sep; 107():103529. PubMed ID: 32629111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dysfunctional Cav1.2 channel in Timothy syndrome, from cell to bedside.
    Han D; Xue X; Yan Y; Li G
    Exp Biol Med (Maywood); 2019 Sep; 244(12):960-971. PubMed ID: 31324123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA receptors and L-type voltage-gated Ca²⁺ channels mediate the expression of bidirectional homeostatic intrinsic plasticity in cultured hippocampal neurons.
    Lee KY; Chung HJ
    Neuroscience; 2014 Sep; 277():610-23. PubMed ID: 25086314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cav1.2 channelopathies causing autism: new hallmarks on Timothy syndrome.
    Marcantoni A; Calorio C; Hidisoglu E; Chiantia G; Carbone E
    Pflugers Arch; 2020 Jul; 472(7):775-789. PubMed ID: 32621084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased coupled gating of L-type Ca2+ channels during hypertension and Timothy syndrome.
    Navedo MF; Cheng EP; Yuan C; Votaw S; Molkentin JD; Scott JD; Santana LF
    Circ Res; 2010 Mar; 106(4):748-56. PubMed ID: 20110531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-dependent signaling by Cav1.2 regulates hair follicle stem cell function.
    Yucel G; Altindag B; Gomez-Ospina N; Rana A; Panagiotakos G; Lara MF; Dolmetsch R; Oro AE
    Genes Dev; 2013 Jun; 27(11):1217-22. PubMed ID: 23752588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal transduction. Calcium channels--link locally, act globally.
    Ikeda SR
    Science; 2001 Oct; 294(5541):318-9. PubMed ID: 11598289
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of cpg15 by signaling pathways that mediate synaptic plasticity.
    Fujino T; Lee WC; Nedivi E
    Mol Cell Neurosci; 2003 Nov; 24(3):538-54. PubMed ID: 14664806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(V)1.2 I-II linker structure and Timothy syndrome.
    Almagor L; Chomsky-Hecht O; Ben-Mocha A; Hendin-Barak D; Dascal N; Hirsch JA
    Channels (Austin); 2012; 6(6):468-72. PubMed ID: 22990809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered Cav1.2 function in the Timothy syndrome mouse model produces ascending serotonergic abnormalities.
    Ehlinger DG; Commons KG
    Eur J Neurosci; 2017 Oct; 46(8):2416-2425. PubMed ID: 28921675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arrhythmogenesis in Timothy Syndrome is associated with defects in Ca(2+)-dependent inactivation.
    Dick IE; Joshi-Mukherjee R; Yang W; Yue DT
    Nat Commun; 2016 Jan; 7():10370. PubMed ID: 26822303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.