These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 2691331)

  • 1. Genome walking by single-specific-primer polymerase chain reaction: SSP-PCR.
    Shyamala V; Ames GF
    Gene; 1989 Dec; 84(1):1-8. PubMed ID: 2691331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplification of bacterial genomic DNA by the polymerase chain reaction and direct sequencing after asymmetric amplification: application to the study of periplasmic permeases.
    Shyamala V; Ames GF
    J Bacteriol; 1989 Mar; 171(3):1602-8. PubMed ID: 2646290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Polymerase chain reaction, cold probes and clinical diagnosis].
    Haras D; Amoros JP
    Sante; 1994; 4(1):43-52. PubMed ID: 7909267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal conditions to use Pfu exo(-) DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols.
    Angers M; Cloutier JF; Castonguay A; Drouin R
    Nucleic Acids Res; 2001 Aug; 29(16):E83. PubMed ID: 11504891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome walking by single specific primer-polymerase chain reaction.
    Shyamala V; Ames GF
    Methods Enzymol; 1993; 217():436-46. PubMed ID: 8474344
    [No Abstract]   [Full Text] [Related]  

  • 6. Incomplete primer extension during in vitro DNA amplification catalyzed by Taq polymerase; exploitation for DNA sequencing.
    Olsen DB; Eckstein F
    Nucleic Acids Res; 1989 Dec; 17(23):9613-20. PubMed ID: 2602138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of exonuclease for rapid polymerase-chain-reaction-based in vitro mutagenesis.
    Shyamala V; Ames GF
    Gene; 1991 Jan; 97(1):1-6. PubMed ID: 1825304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA sequencing by a subcloning-walking strategy using a specific and semi-random primer in the polymerase chain reaction.
    Verhasselt P; Voet M; Volckaert G
    DNA Seq; 1992; 2(5):281-7. PubMed ID: 1633325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal length requirement of the single-stranded tails for ligation-independent cloning (LIC) of PCR products.
    Aslanidis C; de Jong PJ; Schmitz G
    PCR Methods Appl; 1994 Dec; 4(3):172-7. PubMed ID: 7580902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted gene walking polymerase chain reaction.
    Parker JD; Rabinovitch PS; Burmer GC
    Nucleic Acids Res; 1991 Jun; 19(11):3055-60. PubMed ID: 2057362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction.
    Nelson RM; Long GL
    Anal Biochem; 1989 Jul; 180(1):147-51. PubMed ID: 2530914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method to perform genomic walks using a combination of single strand DNA circularization and rolling circle amplification.
    Gadkar VJ; Filion M
    J Microbiol Methods; 2011 Oct; 87(1):38-43. PubMed ID: 21777627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of polymerase chain reaction and restriction enzyme analysis to directly detect and identify Salmonella typhimurium in food.
    Cocolin L; Manzano M; Cantoni C; Comi G
    J Appl Microbiol; 1998 Oct; 85(4):673-7. PubMed ID: 9812379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCR and DNA sequencing.
    Gyllensten UB
    Biotechniques; 1989; 7(7):700-8. PubMed ID: 2698653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uracil DNA glycosylase-mediated cloning of polymerase chain reaction-amplified DNA: application to genomic and cDNA cloning.
    Rashtchian A; Buchman GW; Schuster DM; Berninger MS
    Anal Biochem; 1992 Oct; 206(1):91-7. PubMed ID: 1456447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated DNA sequencing methods involving polymerase chain reaction.
    McBride LJ; Koepf SM; Gibbs RA; Salser W; Mayrand PE; Hunkapiller MW; Kronick MN
    Clin Chem; 1989 Nov; 35(11):2196-201. PubMed ID: 2582616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PCR amplification of DNA microdissected from a single polytene chromosome band: a comparison with conventional microcloning.
    Saunders RD; Glover DM; Ashburner M; Siden-Kiamos I; Louis C; Monastirioti M; Savakis C; Kafatos F
    Nucleic Acids Res; 1989 Nov; 17(22):9027-37. PubMed ID: 2587252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general method of polymerase-chain-reaction-enabled protein domain mutagenesis: construction of a human protein S-osteonectin gene.
    Villarreal XC; Long GL
    Anal Biochem; 1991 Sep; 197(2):362-7. PubMed ID: 1838462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective amplification of cDNA sequence from total RNA by cassette-ligation mediated polymerase chain reaction (PCR): application to sequencing 6.5 kb genome segment of hantavirus strain B-1.
    Isegawa Y; Sheng J; Sokawa Y; Yamanishi K; Nakagomi O; Ueda S
    Mol Cell Probes; 1992 Dec; 6(6):467-75. PubMed ID: 1336127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient and optimized PCR method with high fidelity for site-directed mutagenesis.
    Liang Q; Chen L; Fulco AJ
    PCR Methods Appl; 1995 Apr; 4(5):269-74. PubMed ID: 7580913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.