These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 26913476)

  • 1. MCPB.py: A Python Based Metal Center Parameter Builder.
    Li P; Merz KM
    J Chem Inf Model; 2016 Apr; 56(4):599-604. PubMed ID: 26913476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameterization of a Dioxygen Binding Metal Site Using the MCPB.py Program.
    Li P; Merz KM
    Methods Mol Biol; 2021; 2199():257-275. PubMed ID: 33125655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modified bonded model approach for molecular dynamics simulations of New Delhi Metallo-β-lactamase.
    Eshtiwi AA; Rathbone DL
    J Mol Graph Model; 2023 Jun; 121():108431. PubMed ID: 36827734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VFFDT: A New Software for Preparing AMBER Force Field Parameters for Metal-Containing Molecular Systems.
    Zheng S; Tang Q; He J; Du S; Xu S; Wang C; Xu Y; Lin F
    J Chem Inf Model; 2016 Apr; 56(4):811-8. PubMed ID: 26998926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of including torsional parameters for histidine-metal interactions in classical force fields for metalloproteins.
    Mera-Adasme R; Sadeghian K; Sundholm D; Ochsenfeld C
    J Phys Chem B; 2014 Nov; 118(46):13106-11. PubMed ID: 25410708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale Quantum Refinement Approaches for Metalloproteins.
    Yan Z; Li X; Chung LW
    J Chem Theory Comput; 2021 Jun; 17(6):3783-3796. PubMed ID: 34032440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Survey of Zinc Containing Proteins and the Development of the Zinc AMBER Force Field (ZAFF).
    Peters MB; Yang Y; Wang B; Füsti-Molnár L; Weaver MN; Merz KM
    J Chem Theory Comput; 2010 Sep; 6(9):2935-2947. PubMed ID: 20856692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dynamics of a dizinc metalloprotein: effect of charge transfer and polarization.
    Li YL; Mei Y; Zhang DW; Xie DQ; Zhang JZ
    J Phys Chem B; 2011 Aug; 115(33):10154-62. PubMed ID: 21766867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parametrization of Molybdenum Cofactors for the AMBER Force Field.
    Ferreira P; Cerqueira NMFSA; Brás NF; Fernandes PA; Ramos MJ
    J Chem Theory Comput; 2018 May; 14(5):2538-2548. PubMed ID: 29630831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valence state parameters of all transition metal atoms in metalloproteins--development of ABEEMσπ fluctuating charge force field.
    Yang ZZ; Wang JJ; Zhao DX
    J Comput Chem; 2014 Sep; 35(23):1690-706. PubMed ID: 25042901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force fields including charge transfer and local polarization effects: Application to proteins containing multi/heavy metal ions.
    Sakharov DV; Lim C
    J Comput Chem; 2009 Jan; 30(2):191-202. PubMed ID: 18566982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fragment Quantum Mechanical Method for Metalloproteins.
    Xu M; He X; Zhu T; Zhang JZH
    J Chem Theory Comput; 2019 Feb; 15(2):1430-1439. PubMed ID: 30620584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum effects in cation interactions with first and second coordination shell ligands in metalloproteins.
    Ngo V; da Silva MC; Kubillus M; Li H; Roux B; Elstner M; Cui Q; Salahub DR; Noskov SY
    J Chem Theory Comput; 2015 Oct; 11(10):4992-5001. PubMed ID: 26574284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes.
    Jain T; Jayaram B
    Proteins; 2007 Jun; 67(4):1167-78. PubMed ID: 17380508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speciation of copper-peptide complexes in water solution using DFTB and DFT approaches: case of the [Cu(HGGG)(Py)] complex.
    Bruschi M; Bertini L; Bonačić-Koutecký V; De Gioia L; Mitrić R; Zampella G; Fantucci P
    J Phys Chem B; 2012 Jun; 116(22):6250-60. PubMed ID: 22537307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of metal ions with biomolecular ligands: how accurate are calculated free energies associated with metal ion complexation?
    Gutten O; Beššeová I; Rulíšek L
    J Phys Chem A; 2011 Oct; 115(41):11394-402. PubMed ID: 21888367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extension of QM/MM docking and its applications to metalloproteins.
    Cho AE; Rinaldo D
    J Comput Chem; 2009 Dec; 30(16):2609-16. PubMed ID: 19373896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General molecular mechanics method for transition metal carboxylates and its application to the multiple coordination modes in mono- and dinuclear Mn(II) complexes.
    Deeth RJ
    Inorg Chem; 2008 Aug; 47(15):6711-25. PubMed ID: 18597447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas phase studies of the Pesci decarboxylation reaction: synthesis, structure, and unimolecular and bimolecular reactivity of organometallic ions.
    O'Hair RA; Rijs NJ
    Acc Chem Res; 2015 Feb; 48(2):329-40. PubMed ID: 25594228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.