BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 26913503)

  • 1. Label-free electrochemical lead (II) aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform.
    Gao F; Gao C; He S; Wang Q; Wu A
    Biosens Bioelectron; 2016 Jul; 81():15-22. PubMed ID: 26913503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile fabrication of an electrochemical aptasensor based on magnetic electrode by using streptavidin modified magnetic beads for sensitive and specific detection of Hg(2.).
    Wu D; Wang Y; Zhang Y; Ma H; Pang X; Hu L; Du B; Wei Q
    Biosens Bioelectron; 2016 Aug; 82():9-13. PubMed ID: 27031185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction.
    Sun AL; Zhang YF; Sun GP; Wang XN; Tang D
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):659-665. PubMed ID: 26707001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optofluidics-based DNA structure-competitive aptasensor for rapid on-site detection of lead(II) in an aquatic environment.
    Long F; Zhu A; Wang H
    Anal Chim Acta; 2014 Nov; 849():43-9. PubMed ID: 25300216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoporous Au-based chronocoulometric aptasensor for amplified detection of Pb(2+) using DNAzyme modified with Au nanoparticles.
    Zhang C; Lai C; Zeng G; Huang D; Tang L; Yang C; Zhou Y; Qin L; Cheng M
    Biosens Bioelectron; 2016 Jul; 81():61-67. PubMed ID: 26921553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A label-free electrochemical impedance aptasensor for cylindrospermopsin detection based on thionine-graphene nanocomposites.
    Zhao Z; Chen H; Ma L; Liu D; Wang Z
    Analyst; 2015 Aug; 140(16):5570-7. PubMed ID: 26111280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive label-free electrochemical aptasensor for Pb
    Li M; Liu H; He B; Xie L; Cao X; Jin H; Wei M; Ren W; Suo Z; Xu Y
    Talanta; 2024 Aug; 276():126260. PubMed ID: 38759364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine.
    Jin H; Zhao C; Gui R; Gao X; Wang Z
    Anal Chim Acta; 2018 Sep; 1025():154-162. PubMed ID: 29801604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aptamer-linked biosensor for thrombin based on AuNPs/thionine-graphene nanocomposite.
    Zhang Z; Luo L; Zhu L; Ding Y; Deng D; Wang Z
    Analyst; 2013 Sep; 138(18):5365-70. PubMed ID: 23877321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully integrated graphene electronic biosensor for label-free detection of lead (II) ion based on G-quadruplex structure-switching.
    Li Y; Wang C; Zhu Y; Zhou X; Xiang Y; He M; Zeng S
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):758-763. PubMed ID: 27816595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel aptasensor based on 3D-reduced graphene oxide modified gold nanoparticles for determination of arsenite.
    Ensafi AA; Akbarian F; Heydari-Soureshjani E; Rezaei B
    Biosens Bioelectron; 2018 Dec; 122():25-31. PubMed ID: 30236805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aptasensor for electrochemical sensing of angiogenin based on electrode modified by cationic polyelectrolyte-functionalized graphene/gold nanoparticles composites.
    Chen Z; Zhang C; Li X; Ma H; Wan C; Li K; Lin Y
    Biosens Bioelectron; 2015 Mar; 65():232-7. PubMed ID: 25461163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel signal amplification strategy of an electrochemical aptasensor for kanamycin, based on thionine functionalized graphene and hierarchical nanoporous PtCu.
    Qin X; Yin Y; Yu H; Guo W; Pei M
    Biosens Bioelectron; 2016 Mar; 77():752-8. PubMed ID: 26513281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite.
    Cui L; Wu J; Ju H
    Biosens Bioelectron; 2016 May; 79():861-5. PubMed ID: 26785310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclodextrin functionalized graphene-gold nanoparticle hybrids with strong supramolecular capability for electrochemical thrombin aptasensor.
    Xue Q; Liu Z; Guo Y; Guo S
    Biosens Bioelectron; 2015 Jun; 68():429-436. PubMed ID: 25618374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple paper-based aptasensor for ultrasensitive detection of lead (II) ion.
    Khoshbin Z; Housaindokht MR; Izadyar M; Verdian A; Bozorgmehr MR
    Anal Chim Acta; 2019 Sep; 1071():70-77. PubMed ID: 31128757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly sensitive label-free electrochemical aptasensor for interferon-gamma detection based on graphene controlled assembly and nuclease cleavage-assisted target recycling amplification.
    Yan G; Wang Y; He X; Wang K; Liu J; Du Y
    Biosens Bioelectron; 2013 Jun; 44():57-63. PubMed ID: 23391707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free voltammetric aptasensor for the sensitive detection of microcystin-LR using graphene-modified electrodes.
    Eissa S; Ng A; Siaj M; Zourob M
    Anal Chem; 2014 Aug; 86(15):7551-7. PubMed ID: 25011536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Signal-on" photoelectrochemical sensing strategy based on target-dependent aptamer conformational conversion for selective detection of lead(II) ion.
    Zang Y; Lei J; Hao Q; Ju H
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15991-7. PubMed ID: 25170538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA aptamers selection and characterization for development of label-free impedimetric aptasensor for neurotoxin anatoxin-a.
    Elshafey R; Siaj M; Zourob M
    Biosens Bioelectron; 2015 Jun; 68():295-302. PubMed ID: 25594161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.