BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26913577)

  • 1. Polyol production during heterofermentative growth of the plant isolate Lactobacillus florum 2F.
    Tyler CA; Kopit L; Doyle C; Yu AO; Hugenholtz J; Marco ML
    J Appl Microbiol; 2016 May; 120(5):1336-45. PubMed ID: 26913577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693.
    Saha BC; Nakamura LK
    Biotechnol Bioeng; 2003 Jun; 82(7):864-71. PubMed ID: 12701154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotechnological and in situ food production of polyols by lactic acid bacteria.
    Ortiz ME; Bleckwedel J; Raya RR; Mozzi F
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4713-26. PubMed ID: 23604535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches.
    Endo A; Futagawa-Endo Y; Dicks LM
    Syst Appl Microbiol; 2009 Dec; 32(8):593-600. PubMed ID: 19733991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation, characterisation and exploitation of lactic acid bacteria capable of efficient conversion of sugars to mannitol.
    Rice T; Sahin AW; Lynch KM; Arendt EK; Coffey A
    Int J Food Microbiol; 2020 May; 321():108546. PubMed ID: 32087410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyol-producing lactic acid bacteria isolated from sourdough and their application to reduce sugar in a quinoa-based milk substitute.
    Jeske S; Zannini E; Lynch KM; Coffey A; Arendt EK
    Int J Food Microbiol; 2018 Dec; 286():31-36. PubMed ID: 30031986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth studies of potentially probiotic lactic acid bacteria in cereal-based substrates.
    Charalampopoulos D; Pandiella SS; Webb C
    J Appl Microbiol; 2002; 92(5):851-9. PubMed ID: 11972688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotechnological production of mannitol and its applications.
    Saha BC; Racine FM
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):879-91. PubMed ID: 21063702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspectives of engineering lactic acid bacteria for biotechnological polyol production.
    Monedero V; Pérez-Martínez G; Yebra MJ
    Appl Microbiol Biotechnol; 2010 Apr; 86(4):1003-15. PubMed ID: 20180114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic changes in group B streptococci grown in the presence of the polyols, erythritol, sorbitol and mannitol.
    Hulbah M; Croxen MA; Tyrrell GJ
    BMC Microbiol; 2021 May; 21(1):145. PubMed ID: 33985431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana.
    Camu N; De Winter T; Verbrugghe K; Cleenwerck I; Vandamme P; Takrama JS; Vancanneyt M; De Vuyst L
    Appl Environ Microbiol; 2007 Mar; 73(6):1809-24. PubMed ID: 17277227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of lactic acid bacteria strains isolated from fructose-rich environments for their mannitol-production and milk-gelation abilities.
    Behare PV; Mazhar S; Pennone V; McAuliffe O
    J Dairy Sci; 2020 Dec; 103(12):11138-11151. PubMed ID: 33010917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mannitol Production by Heterofermentative Lactic Acid Bacteria: a Review.
    Martínez-Miranda JG; Chairez I; Durán-Páramo E
    Appl Biochem Biotechnol; 2022 Jun; 194(6):2762-2795. PubMed ID: 35195836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids.
    Zaunmüller T; Eichert M; Richter H; Unden G
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):421-9. PubMed ID: 16826375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pH and corn steep liquor variability on mannitol production by Lactobacillus intermedius NRRL B-3693.
    Saha BC; Racine FM
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):553-60. PubMed ID: 20361324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fermentation by Lactobacillus fermentum Ogi E1 of different combinations of carbohydrates occurring naturally in cereals: consequences on growth energetics and alpha-amylase production.
    Calderon M; Loiseau G; Guyot JP
    Int J Food Microbiol; 2003 Jan; 80(2):161-9. PubMed ID: 12381402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of mannitol producing Leuconostoc citreum TR116 to reduce sugar content of barley, oat and wheat malt-based worts.
    Rice T; Sahin AW; Heitmann M; Lynch KM; Jacob F; Arendt EK; Coffey A
    Food Microbiol; 2020 Sep; 90():103464. PubMed ID: 32336355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyol accumulation by Aspergillus oryzae at low water activity in solid-state fermentation.
    Ruijter GJG; Visser J; Rinzema A
    Microbiology (Reading); 2004 Apr; 150(Pt 4):1095-1101. PubMed ID: 15073319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH control on lactic acid fermentation of starch by Lactobacillus manihotivorans LMG 18010T.
    Guyot JP; Calderon M; Morlon-Guyot J
    J Appl Microbiol; 2000 Jan; 88(1):176-82. PubMed ID: 10735257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation of glucose, lactose, galactose, mannitol, and xylose by bifidobacteria.
    de Vries W; Stouthamer AH
    J Bacteriol; 1968 Aug; 96(2):472-8. PubMed ID: 5674058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.