These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 26913686)

  • 1. Enhancement of Resonant Energy Transfer Due to an Evanescent Wave from the Metal.
    Poudel A; Chen X; Ratner MA
    J Phys Chem Lett; 2016 Mar; 7(6):955-60. PubMed ID: 26913686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonant energy transfer under the influence of the evanescent field from the metal.
    Poudel A; Chen X; Ratner MA
    J Chem Phys; 2017 Jun; 146(24):244115. PubMed ID: 28668023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of a charged neighboring particle on Förster resonance energy transfer (FRET).
    Abeywickrama C; Premaratne M; Gunapala SD; Andrews DL
    J Phys Condens Matter; 2020 Feb; 32(9):095305. PubMed ID: 31722329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states.
    Gonzaga-Galeana JA; Zurita-Sánchez JR
    J Chem Phys; 2013 Dec; 139(24):244302. PubMed ID: 24387365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of gain medium on the plasmonic enhancement of Forster resonance energy transfer in the vicinity of a metallic particle or cavity.
    Chang R; Leung PT; Tsai DP
    Opt Express; 2014 Nov; 22(22):27451-61. PubMed ID: 25401893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of Förster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials.
    Tumkur TU; Kitur JK; Bonner CE; Poddubny AN; Narimanov EE; Noginov MA
    Faraday Discuss; 2015; 178():395-412. PubMed ID: 25803206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance spectroscopy based on evanescent field treatment.
    Ekgasit S; Thammacharoen C; Knoll W
    Anal Chem; 2004 Feb; 76(3):561-8. PubMed ID: 14750847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters.
    Marocico CA; Zhang X; Bradley AL
    J Chem Phys; 2016 Jan; 144(2):024108. PubMed ID: 26772555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly nonparaxial spin Hall effect and its enhancement by plasmonic structures.
    Agarwal GS; Biehs SA
    Opt Lett; 2013 Nov; 38(21):4421-4. PubMed ID: 24177109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light scattering by a nanoparticle and a dipole placed near a dielectric surface covered by a thin metallic film.
    Geshev PI; Fischer UC; Fuchs H
    Opt Express; 2007 Oct; 15(21):13796-804. PubMed ID: 19550650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Förster resonance energy transfer in a nanoscopic system on a dielectric interface.
    Batabyal S; Mondol T; Das K; Pal SK
    Nanotechnology; 2012 Dec; 23(49):495402. PubMed ID: 23150145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield.
    Jacob MH; Dsouza RN; Ghosh I; Norouzy A; Schwarzlose T; Nau WM
    J Phys Chem B; 2013 Jan; 117(1):185-98. PubMed ID: 23215358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shared-mode assisted resonant energy transfer in the weak coupling regime.
    Hennebicq E; Beljonne D; Curutchet C; Scholes GD; Silbey RJ
    J Chem Phys; 2009 Jun; 130(21):214505. PubMed ID: 19508074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-enhanced luminescence in colloidal solutions of CdSe and metal nanoparticles: investigation of density dependence and optical band overlap.
    Rohner C; Tavernaro I; Chen L; Klar PJ; Schlecht S
    Phys Chem Chem Phys; 2015 Feb; 17(8):5932-41. PubMed ID: 25635837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-enhanced Förster resonance energy transfer (ME-FRET) in anthracene/tetracene-doped crystal systems.
    Karnam L; Brambilla L; Del Zoppo M; Bertarelli C
    Phys Chem Chem Phys; 2017 Nov; 19(45):30734-30739. PubMed ID: 29125153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental figures of merit for engineering Förster resonance energy transfer.
    Cortes CL; Jacob Z
    Opt Express; 2018 Jul; 26(15):19371-19387. PubMed ID: 30114111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic control of Förster energy transfer in a photonic environment.
    Schleifenbaum F; Kern AM; Konrad A; Meixner AJ
    Phys Chem Chem Phys; 2014 Jul; 16(25):12812-7. PubMed ID: 24840741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanophotonic control of the Förster resonance energy transfer efficiency.
    Blum C; Zijlstra N; Lagendijk A; Wubs M; Mosk AP; Subramaniam V; Vos WL
    Phys Rev Lett; 2012 Nov; 109(20):203601. PubMed ID: 23215487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evanescent waves in high numerical aperture aplanatic solid immersion microscopy: effects of forbidden light on subsurface imaging.
    Yurt A; Uyar A; Cilingiroglu TB; Goldberg BB; Ünlü MS
    Opt Express; 2014 Apr; 22(7):7422-33. PubMed ID: 24718117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.