These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 26913686)

  • 21. Singularity of the dyadic Green's function for heterogeneous dielectrics.
    Guérin CA; Gralak B; Tip A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056601. PubMed ID: 17677180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A general formula for the rate of resonant transfer of energy between two electric multipole moments of arbitrary order using molecular quantum electrodynamics.
    Salam A
    J Chem Phys; 2005 Jan; 122(4):44112. PubMed ID: 15740240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Entangled Photon Resonance Energy Transfer in Arbitrary Media.
    Avanaki KN; Schatz GC
    J Phys Chem Lett; 2019 Jun; 10(11):3181-3188. PubMed ID: 31117677
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Propagating and evanescent modes in two-dimensional wire media.
    Nefedov IS; Viitanen AJ; Tretyakov SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046612. PubMed ID: 15903811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomic force microscopy silicon tips as photon tunneling sensors: a resonant evanescent coupling experiment.
    Fillard JP; Castagne M; Prioleau C
    Appl Opt; 1995 Jul; 34(19):3737-42. PubMed ID: 21052196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical study of the photodesorption mechanism of nitric oxide on a Ag(111) surface: a nonequilibrium Green's function approach to hot-electron tunneling.
    Nakamura H; Yamashita K
    J Chem Phys; 2006 Aug; 125(8):084708. PubMed ID: 16965040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Excitation energy transfer between closely spaced multichromophoric systems: effects of band mixing and intraband relaxation.
    Didraga C; Malyshev VA; Knoester J
    J Phys Chem B; 2006 Sep; 110(38):18818-27. PubMed ID: 16986872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.
    Saini S; Srinivas G; Bagchi B
    J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes.
    Ghanekar A; Lin L; Su J; Sun H; Zheng Y
    Opt Express; 2015 Sep; 23(19):A1129-39. PubMed ID: 26406743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extensive use of FRET in biological imaging.
    Arai Y; Nagai T
    Microscopy (Oxf); 2013 Aug; 62(4):419-28. PubMed ID: 23797967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analyzing Förster resonance energy transfer with fluctuation algorithms.
    Felekyan S; Sanabria H; Kalinin S; Kühnemuth R; Seidel CA
    Methods Enzymol; 2013; 519():39-85. PubMed ID: 23280107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical theorem for electromagnetic field scattering by dielectric structures and energy emission from the evanescent wave.
    Gulyaev YV; Barabanenkov YN; Barabanenkov MY; Nikitov SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026602. PubMed ID: 16196730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications.
    Schau P; Frenner K; Fu L; Schweizer H; Giessen H; Osten W
    Opt Express; 2011 Feb; 19(4):3627-36. PubMed ID: 21369187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resonant optical tunnel effect through dielectric structures of subwavelength cross sections.
    Girard C; Dereux A; Joachim C
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):6097-104. PubMed ID: 11969595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies.
    Ekgasit S; Thammacharoen C; Yu F; Knoll W
    Anal Chem; 2004 Apr; 76(8):2210-9. PubMed ID: 15080730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities.
    Thijssen AC; Cryan MJ; Rarity JG; Oulton R
    Opt Express; 2012 Sep; 20(20):22412-28. PubMed ID: 23037390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescent resonant energy transfer: correlated fluctuations of donor and acceptor.
    Yu ZG
    J Chem Phys; 2007 Dec; 127(22):221101. PubMed ID: 18081378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Förster resonant energy transfer in orthogonally arranged chromophores.
    Langhals H; Esterbauer AJ; Walter A; Riedle E; Pugliesi I
    J Am Chem Soc; 2010 Dec; 132(47):16777-82. PubMed ID: 21053962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phonon-assisted exciton transfer into silicon using nanoemitters: the role of phonons and temperature effects in Förster resonance energy transfer.
    Yeltik A; Guzelturk B; Hernandez-Martinez PL; Govorov AO; Demir HV
    ACS Nano; 2013 Dec; 7(12):10492-501. PubMed ID: 24274734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.