BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26913864)

  • 1. Architecture of the light-harvesting apparatus of the eustigmatophyte alga Nannochloropsis oceanica.
    Litvín R; Bína D; Herbstová M; Gardian Z
    Photosynth Res; 2016 Dec; 130(1-3):137-150. PubMed ID: 26913864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of the supercomplex organization of photosystem II and light-harvesting complexes in Nannochloropsis granulata.
    Umetani I; Kunugi M; Yokono M; Takabayashi A; Tanaka A
    Photosynth Res; 2018 Apr; 136(1):49-61. PubMed ID: 28856533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red-shifted light-harvesting system of freshwater eukaryotic alga Trachydiscus minutus (Eustigmatophyta, Stramenopila).
    Litvín R; Bína D; Herbstová M; Pazderník M; Kotabová E; Gardian Z; Trtílek M; Prášil O; Vácha F
    Photosynth Res; 2019 Nov; 142(2):137-151. PubMed ID: 31375979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution and regulation of Bigelowiella natans light-harvesting antenna system.
    A D Neilson J; Rangsrikitphoti P; Durnford DG
    J Plant Physiol; 2017 Oct; 217():68-76. PubMed ID: 28619535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution and function of light harvesting proteins.
    Büchel C
    J Plant Physiol; 2015 Jan; 172():62-75. PubMed ID: 25240794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of excitation energy in Nannochloropsis photosystem II.
    Yokono M; Umetani I; Takabayashi A; Akimoto S; Tanaka A
    Photosynth Res; 2019 Mar; 139(1-3):155-161. PubMed ID: 29704164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular antenna of photosystem I in secondary plastids of red algal origin: a Nannochloropsis oceanica case study.
    Bína D; Gardian Z; Herbstová M; Litvín R
    Photosynth Res; 2017 Mar; 131(3):255-266. PubMed ID: 27734239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High photochemical trapping efficiency in Photosystem I from the red clade algae Chromera velia and Phaeodactylum tricornutum.
    Belgio E; Santabarbara S; Bína D; Trsková E; Herbstová M; Kaňa R; Zucchelli G; Prášil O
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):56-63. PubMed ID: 27737767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites.
    Tichy J; Gardian Z; Bina D; Konik P; Litvin R; Herbstova M; Pain A; Vacha F
    Biochim Biophys Acta; 2013 Jun; 1827(6):723-9. PubMed ID: 23428396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic analysis of the light-harvesting system in Chromera velia.
    Pan H; Slapeta J; Carter D; Chen M
    Photosynth Res; 2012 Mar; 111(1-2):19-28. PubMed ID: 22161624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes.
    Veith T; Büchel C
    Biochim Biophys Acta; 2007 Dec; 1767(12):1428-35. PubMed ID: 18028870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular phylogeny of fucoxanthin-chlorophyll a/c proteins from Chaetoceros gracilis and Lhcq/Lhcf diversity.
    Kumazawa M; Nishide H; Nagao R; Inoue-Kashino N; Shen JR; Nakano T; Uchiyama I; Kashino Y; Ifuku K
    Physiol Plant; 2022 Jan; 174(1):e13598. PubMed ID: 34792189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light harvesting complexes in chlorophyll c-containing algae.
    Büchel C
    Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148027. PubMed ID: 31153887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoprotective sites in the violaxanthin-chlorophyll a binding Protein (VCP) from Nannochloropsis gaditana.
    Carbonera D; Agostini A; Di Valentin M; Gerotto C; Basso S; Giacometti GM; Morosinotto T
    Biochim Biophys Acta; 2014 Aug; 1837(8):1235-46. PubMed ID: 24704151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems.
    Kotabová E; Jarešová J; Kaňa R; Sobotka R; Bína D; Prášil O
    Biochim Biophys Acta; 2014 Jun; 1837(6):734-43. PubMed ID: 24480388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific Lhc Proteins Are Bound to PSI or PSII Supercomplexes in the Diatom
    Calvaruso C; Rokka A; Aro EM; Büchel C
    Plant Physiol; 2020 May; 183(1):67-79. PubMed ID: 32198308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the photosynthetic apparatus of the Eustigmatophycean Nannochloropsis gaditana: evidence of convergent evolution in the supramolecular organization of photosystem I.
    Basso S; Simionato D; Gerotto C; Segalla A; Giacometti GM; Morosinotto T
    Biochim Biophys Acta; 2014 Feb; 1837(2):306-14. PubMed ID: 24321505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation energy transfer in the far-red absorbing violaxanthin/vaucheriaxanthin chlorophyll a complex from the eustigmatophyte alga FP5.
    Niedzwiedzki DM; Wolf BM; Blankenship RE
    Photosynth Res; 2019 Jun; 140(3):337-354. PubMed ID: 30701484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica.
    Keşan G; Litvín R; Bína D; Durchan M; Šlouf V; Polívka T
    Biochim Biophys Acta; 2016 Apr; 1857(4):370-9. PubMed ID: 26744091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pigment structure in the FCP-like light-harvesting complex from Chromera velia.
    Llansola-Portoles MJ; Uragami C; Pascal AA; Bina D; Litvin R; Robert B
    Biochim Biophys Acta; 2016 Nov; 1857(11):1759-1765. PubMed ID: 27544823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.