These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 26914059)

  • 1. Introducing folding stability into the score function for computational design of RNA-binding peptides boosts the probability of success.
    Xiao X; Agris PF; Hall CK
    Proteins; 2016 May; 84(5):700-11. PubMed ID: 26914059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular recognition mechanism of peptide chain bound to the tRNA(Lys3) anticodon loop in silico.
    Xiao X; Agris PF; Hall CK
    J Biomol Struct Dyn; 2015; 33(1):14-27. PubMed ID: 24417415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The design of a peptide sequence to inhibit HIV replication: a search algorithm combining Monte Carlo and self-consistent mean field techniques.
    Xiao X; Hall CK; Agris PF
    J Biomol Struct Dyn; 2014; 32(10):1523-36. PubMed ID: 24147736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation study of the ability of a computationally-designed peptide to recognize target tRNA
    Xiao X; Zhao B; Agris PF; Hall CK
    Protein Sci; 2016 Dec; 25(12):2243-2255. PubMed ID: 27680513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adding energy minimization strategy to peptide-design algorithm enables better search for RNA-binding peptides: Redesigned λ N peptide binds boxB RNA.
    Xiao X; Hung ME; Leonard JN; Hall CK
    J Comput Chem; 2016 Oct; 37(27):2423-35. PubMed ID: 27487990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing peptide sequences in flexible chain conformations to bind RNA: a search algorithm combining Monte Carlo, self-consistent mean field and concerted rotation techniques.
    Xiao X; Agris PF; Hall CK
    J Chem Theory Comput; 2015 Feb; 11(2):740-52. PubMed ID: 26579605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity of phage display selected peptides for modified anticodon stem and loop domains of tRNA.
    Eshete M; Marchbank MT; Deutscher SL; Sproat B; Leszczynska G; Malkiewicz A; Agris PF
    Protein J; 2007 Jan; 26(1):61-73. PubMed ID: 17237992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extended Concerted Rotation Technique Enhances the Sampling Efficiency of the Computational Peptide-Design Algorithm.
    Xiao X; Wang Y; Leonard JN; Hall CK
    J Chem Theory Comput; 2017 Nov; 13(11):5709-5720. PubMed ID: 29023116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein design for diversity of sequences and conformations using dead-end elimination.
    Hanf KJ
    Methods Mol Biol; 2012; 899():127-44. PubMed ID: 22735950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-Peptide Interaction Design: PepCrawler and PinaColada.
    Zaidman D; Wolfson HJ
    Methods Mol Biol; 2017; 1561():279-290. PubMed ID: 28236244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid signature enables proteins to recognize modified tRNA.
    Spears JL; Xiao X; Hall CK; Agris PF
    Biochemistry; 2014 Feb; 53(7):1125-33. PubMed ID: 24483944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-binding peptides: Binding-upon-folding versus folding-upon-binding.
    Li Z; Yan F; Miao Q; Meng Y; Wen L; Jiang Q; Zhou P
    J Theor Biol; 2019 May; 469():25-34. PubMed ID: 30802465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between helix stability and binding affinities: molecular dynamics simulations of Bfl-1/A1-binding pro-apoptotic BH3 peptide helices in explicit solvent.
    Modi V; Lama D; Sankararamakrishnan R
    J Biomol Struct Dyn; 2013; 31(1):65-77. PubMed ID: 22803956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. As good as it gets? Folding molecular dynamics simulations of the LytA choline-binding peptide result to an exceptionally accurate model of the peptide structure.
    Patmanidis I; Glykos NM
    J Mol Graph Model; 2013 Apr; 41():68-71. PubMed ID: 23500629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ratcheted molecular-dynamics simulations identify efficiently the transition state of protein folding.
    Tiana G; Camilloni C
    J Chem Phys; 2012 Dec; 137(23):235101. PubMed ID: 23267502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study of two different force fields on structural and thermodynamics character of H1 peptide via molecular dynamics simulations.
    Cao Z; Wang J
    J Biomol Struct Dyn; 2010 Apr; 27(5):651-61. PubMed ID: 20085382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing High-Affinity Peptides for Organic Molecules by Explicit Solvent Molecular Dynamics.
    Gladich I; Rodriguez A; Hong Enriquez RP; Guida F; Berti F; Laio A
    J Phys Chem B; 2015 Oct; 119(41):12963-9. PubMed ID: 26398715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding and insertion thermodynamics of the transmembrane WALP peptide.
    Bereau T; Bennett WF; Pfaendtner J; Deserno M; Karttunen M
    J Chem Phys; 2015 Dec; 143(24):243127. PubMed ID: 26723612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-binding peptides: folding or binding?
    Yang C; Zhang S; He P; Wang C; Huang J; Zhou P
    J Chem Inf Model; 2015 Feb; 55(2):329-42. PubMed ID: 25643174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Order through disorder: hyper-mobile C-terminal residues stabilize the folded state of a helical peptide. a molecular dynamics study.
    Patapati KK; Glykos NM
    PLoS One; 2010 Dec; 5(12):e15290. PubMed ID: 21187962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.