These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 26914179)

  • 1. Fundamental Limits on the Subthreshold Slope in Schottky Source/Drain Black Phosphorus Field-Effect Transistors.
    Haratipour N; Namgung S; Oh SH; Koester SJ
    ACS Nano; 2016 Mar; 10(3):3791-800. PubMed ID: 26914179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-Dependent Transport in Ultrathin Black Phosphorus Field-Effect Transistors.
    Yan X; Wang H; Sanchez Esqueda I
    Nano Lett; 2019 Jan; 19(1):482-487. PubMed ID: 30518214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling.
    Du Y; Liu H; Deng Y; Ye PD
    ACS Nano; 2014 Oct; 8(10):10035-42. PubMed ID: 25314022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Black Phosphorus Transistors with Near Band Edge Contact Schottky Barrier.
    Ling ZP; Sakar S; Mathew S; Zhu JT; Gopinadhan K; Venkatesan T; Ang KW
    Sci Rep; 2015 Dec; 5():18000. PubMed ID: 26667402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low Schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts.
    Kamalakar MV; Madhushankar BN; Dankert A; Dash SP
    Small; 2015 May; 11(18):2209-16. PubMed ID: 25586013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Gate Black Phosphorus Field-Effect Transistors with Hexagonal Boron Nitride as Dielectric and Passivation Layers.
    Ra HS; Lee AY; Kwak DH; Jeong MH; Lee JS
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):925-932. PubMed ID: 29256593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High performance tunnel field-effect transistor by gate and source engineering.
    Huang R; Huang Q; Chen S; Wu C; Wang J; An X; Wang Y
    Nanotechnology; 2014 Dec; 25(50):505201. PubMed ID: 25427134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Few-layer black phosphorus field-effect transistors with reduced current fluctuation.
    Na J; Lee YT; Lim JA; Hwang DK; Kim GT; Choi WK; Song YW
    ACS Nano; 2014 Nov; 8(11):11753-62. PubMed ID: 25369559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Important Is the Metal-Semiconductor Contact for Schottky Barrier Transistors: A Case Study on Few-Layer Black Phosphorus?
    Yang L; Charnas A; Qiu G; Lin YM; Lu CC; Tsai W; Paduano Q; Snure M; Ye PD
    ACS Omega; 2017 Aug; 2(8):4173-4179. PubMed ID: 31457714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical transport of bottom-up grown single-crystal Si(1-x)Ge(x) nanowire.
    Yang WF; Lee SJ; Liang GC; Whang SJ; Kwong DL
    Nanotechnology; 2008 Jun; 19(22):225203. PubMed ID: 21825755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parametric Analysis of Indium Gallium Arsenide Wafer-based Thin Body (5 nm) Double-gate MOSFETs for Hybrid RF Applications.
    Paramasivam P; Gowthaman N; Srivastava VM
    Recent Pat Nanotechnol; 2024; 18(3):335-349. PubMed ID: 37723950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Black Phosphorus Based Field Effect Transistors with Simultaneously Achieved Near Ideal Subthreshold Swing and High Hole Mobility at Room Temperature.
    Liu X; Ang KW; Yu W; He J; Feng X; Liu Q; Jiang H; Dan Tang ; Wen J; Lu Y; Liu W; Cao P; Han S; Wu J; Liu W; Wang X; Zhu D; He Z
    Sci Rep; 2016 Apr; 6():24920. PubMed ID: 27102711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of degradation induced by negative gate bias and illumination stress in amorphous InGaZnO thin-film transistors by applying negative drain bias.
    Wang D; Hung MP; Jiang J; Toda T; Furuta M
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5713-8. PubMed ID: 24689829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate Threshold Voltage Reliability Evaluation of Thin Al
    Goyal N; Parihar N; Jawa H; Mahapatra S; Lodha S
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23673-23680. PubMed ID: 31252490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field effect transistors with current saturation and voltage gain in ultrathin ReS2.
    Corbet CM; McClellan C; Rai A; Sonde SS; Tutuc E; Banerjee SK
    ACS Nano; 2015 Jan; 9(1):363-70. PubMed ID: 25514177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model.
    Penumatcha AV; Salazar RB; Appenzeller J
    Nat Commun; 2015 Nov; 6():8948. PubMed ID: 26563458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface Engineering for the Enhancement of Carrier Transport in Black Phosphorus Transistor with Ultra-Thin High-k Gate Dielectric.
    Ling ZP; Zhu JT; Liu X; Ang KW
    Sci Rep; 2016 May; 6():26609. PubMed ID: 27222074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-ideal subthreshold swing MoS
    Pan Y; Jia K; Huang K; Wu Z; Bai G; Yu J; Zhang Z; Zhang Q; Yin H
    Nanotechnology; 2019 Mar; 30(9):095202. PubMed ID: 30561381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors.
    Braga D; GutiƩrrez Lezama I; Berger H; Morpurgo AF
    Nano Lett; 2012 Oct; 12(10):5218-23. PubMed ID: 22989251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanowire Tunnel FET with Simultaneously Reduced Subthermionic Subthreshold Swing and Off-Current due to Negative Capacitance and Voltage Pinning Effects.
    Saeidi A; Rosca T; Memisevic E; Stolichnov I; Cavalieri M; Wernersson LE; Ionescu AM
    Nano Lett; 2020 May; 20(5):3255-3262. PubMed ID: 32293188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.