These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26914292)

  • 1. Derivation of Reliable Geometries in QM Calculations of DNA Structures: Explicit Solvent QM/MM and Restrained Implicit Solvent QM Optimizations of G-Quadruplexes.
    Gkionis K; Kruse H; Šponer J
    J Chem Theory Comput; 2016 Apr; 12(4):2000-16. PubMed ID: 26914292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards biochemically relevant QM computations on nucleic acids: controlled electronic structure geometry optimization of nucleic acid structural motifs using penalty restraint functions.
    Kruse H; Šponer J
    Phys Chem Chem Phys; 2015 Jan; 17(2):1399-410. PubMed ID: 25427983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative stability of different DNA guanine quadruplex stem topologies derived using large-scale quantum-chemical computations.
    Šponer J; Mládek A; Špačková N; Cang X; Cheatham TE; Grimme S
    J Am Chem Soc; 2013 Jul; 135(26):9785-96. PubMed ID: 23742743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined QM and MM investigation into guanine quadruplexes.
    Clay EH; Gould IR
    J Mol Graph Model; 2005 Oct; 24(2):138-46. PubMed ID: 16168688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Geometry Optimizations on QM-Cluster and QM/MM Studies of Reaction Energies in Proteins.
    Sumner S; Söderhjelm P; Ryde U
    J Chem Theory Comput; 2013 Sep; 9(9):4205-14. PubMed ID: 26592409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QM/MM calculation of solvent effects on absorption spectra of guanine.
    Parac M; Doerr M; Marian CM; Thiel W
    J Comput Chem; 2010 Jan; 31(1):90-106. PubMed ID: 19412906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmark quantum-chemical calculations on a complete set of rotameric families of the DNA sugar-phosphate backbone and their comparison with modern density functional theory.
    Mládek A; Krepl M; Svozil D; Cech P; Otyepka M; Banáš P; Zgarbová M; Jurečka P; Sponer J
    Phys Chem Chem Phys; 2013 May; 15(19):7295-310. PubMed ID: 23575975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QM Computations on Complete Nucleic Acids Building Blocks: Analysis of the Sarcin-Ricin RNA Motif Using DFT-D3, HF-3c, PM6-D3H, and MM Approaches.
    Kruse H; Havrila M; Šponer J
    J Chem Theory Comput; 2014 Jun; 10(6):2615-29. PubMed ID: 26580782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures in solutions from joint experimental-computational analysis: applications to cyclic molecules and studies of noncovalent interactions.
    Aliev AE; Mia ZA; Khaneja HS; King FD
    J Phys Chem A; 2012 Jan; 116(3):1093-109. PubMed ID: 22204632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic structures of phosphodiesterase-5 active site by combined molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical calculations.
    Xiong Y; Lu HT; Zhan CG
    J Comput Chem; 2008 Jun; 29(8):1259-67. PubMed ID: 18161687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guanine bases in DNA G-quadruplex adopt nonplanar geometries owing to solvation and base pairing.
    Sychrovský V; Sochorová Vokáčová Z; Trantírek L
    J Phys Chem A; 2012 Apr; 116(16):4144-51. PubMed ID: 22471881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level.
    Dabkowska I; Jurecka P; Hobza P
    J Chem Phys; 2005 May; 122(20):204322. PubMed ID: 15945739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations.
    Mládek A; Sharma P; Mitra A; Bhattacharyya D; Sponer J; Sponer JE
    J Phys Chem B; 2009 Feb; 113(6):1743-55. PubMed ID: 19152254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weak Supramolecular Interactions Governing Parallel and Antiparallel DNA Quadruplexes: Insights from Large-Scale Quantum Mechanics Analysis of Experimentally Derived Models.
    Yurenko YP; Novotný J; Marek R
    Chemistry; 2017 Apr; 23(23):5573-5584. PubMed ID: 28225208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leading RNA tertiary interactions: structures, energies, and water insertion of A-minor and P-interactions. A quantum chemical view.
    Sponer JE; Réblova K; Mokdad A; Sychrovský V; Leszczynski J; Sponer J
    J Phys Chem B; 2007 Aug; 111(30):9153-64. PubMed ID: 17602515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature of base stacking: reference quantum-chemical stacking energies in ten unique B-DNA base-pair steps.
    Sponer J; Jurecka P; Marchan I; Luque FJ; Orozco M; Hobza P
    Chemistry; 2006 Mar; 12(10):2854-65. PubMed ID: 16425171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A General Boundary Potential for Hybrid QM/MM Simulations of Solvated Biomolecular Systems.
    Benighaus T; Thiel W
    J Chem Theory Comput; 2009 Nov; 5(11):3114-28. PubMed ID: 26609991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular modeling and simulation of G-quadruplexes and quadruplex-ligand complexes.
    Haider S; Neidle S
    Methods Mol Biol; 2010; 608():17-37. PubMed ID: 20012413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.