BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26914374)

  • 1. A magnetic nanoparticles relaxation sensor for protein-protein interaction detection at ultra-low magnetic field.
    Wang W; Ma P; Dong H; Krause HJ; Zhang Y; Willbold D; Offenhaeusser A; Gu Z
    Biosens Bioelectron; 2016 Jun; 80():661-665. PubMed ID: 26914374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic graphene quantum dots facilitate closed-tube one-step detection of SARS-CoV-2 with ultra-low field NMR relaxometry.
    Li Y; Ma P; Tao Q; Krause HJ; Yang S; Ding G; Dong H; Xie X
    Sens Actuators B Chem; 2021 Jun; 337():129786. PubMed ID: 33753963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On a ghost artefact in ultra low field magnetic resonance relaxation imaging.
    Volegov P; Schultz L; Espy M
    J Magn Reson; 2014 Jun; 243():98-106. PubMed ID: 24792962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using bio-functionalized magnetic nanoparticles and dynamic nuclear magnetic resonance to characterize the time-dependent spin-spin relaxation time for sensitive bio-detection.
    Liao SH; Chen KL; Wang CM; Chieh JJ; Horng HE; Wang LM; Wu CH; Yang HC
    Sensors (Basel); 2014 Nov; 14(11):21409-17. PubMed ID: 25397920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implications of protein corona on physico-chemical and biological properties of magnetic nanoparticles.
    Yallapu MM; Chauhan N; Othman SF; Khalilzad-Sharghi V; Ebeling MC; Khan S; Jaggi M; Chauhan SC
    Biomaterials; 2015 Apr; 46():1-12. PubMed ID: 25678111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation behavior study of ultrasmall superparamagnetic iron oxide nanoparticles at ultralow and ultrahigh magnetic fields.
    Wang W; Dong H; Pacheco V; Willbold D; Zhang Y; Offenhaeusser A; Hartmann R; Weirich TE; Ma P; Krause HJ; Gu Z
    J Phys Chem B; 2011 Dec; 115(49):14789-93. PubMed ID: 21972868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dual-signal strategy for the solid detection of both small molecules and proteins based on magnetic separation and highly fluorescent copper nanoclusters.
    Cao J; Wang W; Bo B; Mao X; Wang K; Zhu X
    Biosens Bioelectron; 2017 Apr; 90():534-541. PubMed ID: 27825879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascade Reaction-Mediated Assembly of Magnetic/Silver Nanoparticles for Amplified Magnetic Biosensing.
    Chen Y; Xianyu Y; Dong M; Zhang J; Zheng W; Qian Z; Jiang X
    Anal Chem; 2018 Jun; 90(11):6906-6912. PubMed ID: 29727564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Configurational Statistics of Magnetic Bead Detection with Magnetoresistive Sensors.
    Henriksen AD; Ley MW; Flyvbjerg H; Hansen MF
    PLoS One; 2015; 10(10):e0141115. PubMed ID: 26496495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultralow-field and spin-locking relaxation dispersion in postmortem pig brain.
    Dong H; Hwang SM; Wendland M; You L; Clarke J; Inglis B
    Magn Reson Med; 2017 Dec; 78(6):2342-2351. PubMed ID: 28164366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A magnonic gas sensor based on magnetic nanoparticles.
    Matatagui D; Kolokoltsev OV; Qureshi N; Mejía-Uriarte EV; Saniger JM
    Nanoscale; 2015 Jun; 7(21):9607-13. PubMed ID: 25952501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of lysozyme magnetic relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles.
    Bamrungsap S; Shukoor MI; Chen T; Sefah K; Tan W
    Anal Chem; 2011 Oct; 83(20):7795-9. PubMed ID: 21888415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [G3T]5/Tb(3+) based DNA biosensor with target DNA-triggered autocatalytic multi-cycle-amplification and magnetic nanoparticles assisted-background-lowered.
    Jiang H; Zhang X; Wang G
    Biosens Bioelectron; 2015 Dec; 74():931-8. PubMed ID: 26257185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging.
    Wang G; Zhang X; Skallberg A; Liu Y; Hu Z; Mei X; Uvdal K
    Nanoscale; 2014 Mar; 6(5):2953-63. PubMed ID: 24480995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound-Induced Magnetic Imaging of Tumors Targeted by Biofunctional Magnetic Nanoparticles.
    Huang KW; Chieh JJ; Yeh CK; Liao SH; Lee YY; Hsiao PY; Wei WC; Yang HC; Horng HE
    ACS Nano; 2017 Mar; 11(3):3030-3037. PubMed ID: 28276684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging.
    Pernia Leal M; Rivera-Fernández S; Franco JM; Pozo D; de la Fuente JM; García-Martín ML
    Nanoscale; 2015 Feb; 7(5):2050-9. PubMed ID: 25554363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SQUID-detected ultra-low field MRI.
    Espy M; Matlashov A; Volegov P
    J Magn Reson; 2013 Apr; 229():127-41. PubMed ID: 23452838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-low noise graphene/copper/nylon fabric for electromagnetic interference shielding in ultra-low field magnetic resonance imaging.
    Yu M; Tao Q; Dong H; Huang T; Li Y; Xiao Y; Yang S; Gao B; Ding G; Xie X
    J Magn Reson; 2020 Aug; 317():106775. PubMed ID: 32598279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of magnetic labeling on liver tumors with anti-alpha-fetoprotein-mediated Fe3O4 magnetic nanoparticles.
    Huang KW; Chieh JJ; Horng HE; Hong CY; Yang HC
    Int J Nanomedicine; 2012; 7():2987-96. PubMed ID: 22787394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.