These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 26914701)
21. Heterobifunctional poly(ethylene glycol)-tethered bone morphogenetic protein-2-stimulated bone marrow mesenchymal stromal cell differentiation and osteogenesis. Liu HW; Chen CH; Tsai CL; Lin IH; Hsiue GH Tissue Eng; 2007 May; 13(5):1113-24. PubMed ID: 17355208 [TBL] [Abstract][Full Text] [Related]
22. Expanded skeletal stem and progenitor cells promote and participate in induced bone regeneration at subcritical BMP-2 dose. Papageorgiou P; Vallmajo-Martin Q; Kisielow M; Sancho-Puchades A; Kleiner E; Ehrbar M Biomaterials; 2019 Oct; 217():119278. PubMed ID: 31276950 [TBL] [Abstract][Full Text] [Related]
23. Interplay between degradability and integrin signaling on mesenchymal stem cell function within poly(ethylene glycol) based microporous annealed particle hydrogels. Xin S; Gregory CA; Alge DL Acta Biomater; 2020 Jan; 101():227-236. PubMed ID: 31711899 [TBL] [Abstract][Full Text] [Related]
24. Biomimetic synthesis of chondroitin sulfate-analogue hydrogels for regulating osteogenic and chondrogenic differentiation of bone marrow mesenchymal stem cells. Cheng K; Zhu Y; Wang D; Li Y; Xu X; Cai H; Chu H; Li J; Zhang D Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111368. PubMed ID: 32919697 [TBL] [Abstract][Full Text] [Related]
26. An interpenetrating HA/G/CS biomimic hydrogel via Diels-Alder click chemistry for cartilage tissue engineering. Yu F; Cao X; Zeng L; Zhang Q; Chen X Carbohydr Polym; 2013 Aug; 97(1):188-95. PubMed ID: 23769536 [TBL] [Abstract][Full Text] [Related]
27. Hydrogel micropattern-incorporated fibrous scaffolds capable of sequential growth factor delivery for enhanced osteogenesis of hMSCs. Lee HJ; Koh WG ACS Appl Mater Interfaces; 2014 Jun; 6(12):9338-48. PubMed ID: 24915062 [TBL] [Abstract][Full Text] [Related]
28. Synthesis and characterization of a fluvastatin-releasing hydrogel delivery system to modulate hMSC differentiation and function for bone regeneration. Benoit DS; Nuttelman CR; Collins SD; Anseth KS Biomaterials; 2006 Dec; 27(36):6102-10. PubMed ID: 16860387 [TBL] [Abstract][Full Text] [Related]
29. Dexamethasone-functionalized gels induce osteogenic differentiation of encapsulated hMSCs. Nuttelman CR; Tripodi MC; Anseth KS J Biomed Mater Res A; 2006 Jan; 76(1):183-95. PubMed ID: 16265650 [TBL] [Abstract][Full Text] [Related]
30. Over-sulfated chondroitin sulfate derivatives induce osteogenic differentiation of hMSC independent of BMP-2 and TGF-β1 signalling. Büttner M; Möller S; Keller M; Huster D; Schiller J; Schnabelrauch M; Dieter P; Hempel U J Cell Physiol; 2013 Feb; 228(2):330-40. PubMed ID: 22718137 [TBL] [Abstract][Full Text] [Related]
31. Sustained delivery of BMP-2 enhanced osteoblastic differentiation of BMSCs based on surface hydroxyapatite nanostructure in chitosan-HAp scaffold. Wang G; Qiu J; Zheng L; Ren N; Li J; Liu H; Miao J J Biomater Sci Polym Ed; 2014; 25(16):1813-27. PubMed ID: 25166866 [TBL] [Abstract][Full Text] [Related]
32. Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell-derived osteogenic differentiation via bone morphogenetic protein signaling pathways. Manton KJ; Leong DF; Cool SM; Nurcombe V Stem Cells; 2007 Nov; 25(11):2845-54. PubMed ID: 17702986 [TBL] [Abstract][Full Text] [Related]
33. Localization and promotion of recombinant human bone morphogenetic protein-2 bioactivity on extracellular matrix mimetic chondroitin sulfate-functionalized calcium phosphate cement scaffolds. Huang B; Wu Z; Ding S; Yuan Y; Liu C Acta Biomater; 2018 Apr; 71():184-199. PubMed ID: 29355717 [TBL] [Abstract][Full Text] [Related]
34. Characterization of the crosslinking kinetics of multi-arm poly(ethylene glycol) hydrogels formed via Michael-type addition. Kim J; Kong YP; Niedzielski SM; Singh RK; Putnam AJ; Shikanov A Soft Matter; 2016 Feb; 12(7):2076-85. PubMed ID: 26750719 [TBL] [Abstract][Full Text] [Related]
35. Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation. Dos Santos BP; Garbay B; Fenelon M; Rosselin M; Garanger E; Lecommandoux S; Oliveira H; Amédée J Acta Biomater; 2019 Nov; 99():154-167. PubMed ID: 31425892 [TBL] [Abstract][Full Text] [Related]
36. Poly(ethylene glycol) hydrogels with cell cleavable groups for autonomous cell delivery. Kar M; Vernon Shih YR; Velez DO; Cabrales P; Varghese S Biomaterials; 2016 Jan; 77():186-97. PubMed ID: 26606444 [TBL] [Abstract][Full Text] [Related]
37. pH-responsive hybrid hydrogels: Chondroitin sulfate/casein trapped silica nanospheres for controlled drug release. Simão AR; Fragal VH; Lima AMO; Pellá MCG; Garcia FP; Nakamura CV; Tambourgi EB; Rubira AF Int J Biol Macromol; 2020 Apr; 148():302-315. PubMed ID: 31931066 [TBL] [Abstract][Full Text] [Related]
38. Microfluidic fabrication of microcarriers with sequential delivery of VEGF and BMP-2 for bone regeneration. Dashtimoghadam E; Fahimipour F; Tongas N; Tayebi L Sci Rep; 2020 Jul; 10(1):11764. PubMed ID: 32678204 [TBL] [Abstract][Full Text] [Related]
39. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. Poldervaart MT; Goversen B; de Ruijter M; Abbadessa A; Melchels FPW; Öner FC; Dhert WJA; Vermonden T; Alblas J PLoS One; 2017; 12(6):e0177628. PubMed ID: 28586346 [TBL] [Abstract][Full Text] [Related]
40. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate. Huang Z; Nooeaid P; Kohl B; Roether JA; Schubert DW; Meier C; Boccaccini AR; Godkin O; Ertel W; Arens S; Schulze-Tanzil G Mater Sci Eng C Mater Biol Appl; 2015 May; 50():160-72. PubMed ID: 25746258 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]