These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 26914705)
1. Structural Analysis and Inclusion Mechanism of Native and Permethylated α-Cyclodextrin-Based Rotaxanes Containing Alkylene Axles. Akae Y; Koyama Y; Sogawa H; Hayashi Y; Kawauchi S; Kuwata S; Takata T Chemistry; 2016 Apr; 22(15):5335-41. PubMed ID: 26914705 [TBL] [Abstract][Full Text] [Related]
2. Face-selective [2]- and [3]rotaxanes: kinetic control of the threading direction of cyclodextrins. Oshikiri T; Takashima Y; Yamaguchi H; Harada A Chemistry; 2007; 13(25):7091-8. PubMed ID: 17563911 [TBL] [Abstract][Full Text] [Related]
3. Separated and aligned molecular fibres in solid state self-assemblies of cyclodextrin [2]rotaxanes. Onagi H; Carrozzini B; Cascarano GL; Easton CJ; Edwards AJ; Lincoln SF; Rae AD Chemistry; 2003 Dec; 9(24):5971-7. PubMed ID: 14679509 [TBL] [Abstract][Full Text] [Related]
4. Relative rotational motion between alpha-Cyclodextrin Derivatives and a stiff axle molecule. Nishimura D; Oshikiri T; Takashima Y; Hashidzume A; Yamaguchi H; Harada A J Org Chem; 2008 Apr; 73(7):2496-502. PubMed ID: 18336039 [TBL] [Abstract][Full Text] [Related]
5. Rotaxanes and pseudorotaxanes with Fe-, Pd- and Pt-containing axles. Molecular motion in the solid state and aggregation in solution. Suzaki Y; Taira T; Osakada K; Horie M Dalton Trans; 2008 Sep; (36):4823-33. PubMed ID: 18766211 [TBL] [Abstract][Full Text] [Related]
6. Cyclodextrin-based size-complementary [3]rotaxanes: selective synthesis and specific dissociation. Akae Y; Koyama Y; Kuwata S; Takata T Chemistry; 2014 Dec; 20(51):17132-6. PubMed ID: 25351559 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and biological evaluation of multivalent carbohydrate ligands obtained by click assembly of pseudo-rotaxanes. Chwalek M; Auzély R; Fort S Org Biomol Chem; 2009 Apr; 7(8):1680-8. PubMed ID: 19343257 [TBL] [Abstract][Full Text] [Related]
8. Rational Design for Rotaxane Synthesis through Intramolecular Slippage: Control of Activation Energy by Rigid Axle Length. Masai H; Terao J; Fujihara T; Tsuji Y Chemistry; 2016 May; 22(19):6624-30. PubMed ID: 27027800 [TBL] [Abstract][Full Text] [Related]
9. Installation of a ratchet tooth and pawl to restrict rotation in a cyclodextrin rotaxane. Onagi H; Blake CJ; Easton CJ; Lincoln SF Chemistry; 2003 Dec; 9(24):5978-88. PubMed ID: 14679510 [TBL] [Abstract][Full Text] [Related]
10. Programmed Synthesis of Molecular Wires with Fixed Insulation and Defined Length Based on Oligo(phenylene ethynylene) and Permethylated α-Cyclodextrins. Masai H; Fujihara T; Tsuji Y; Terao J Chemistry; 2017 Oct; 23(60):15073-15079. PubMed ID: 28577322 [TBL] [Abstract][Full Text] [Related]
11. Organometallic rotaxanes with a triazole group in the axle component and their behavior as ligands of PtII complexes. Yu G; Suzaki Y; Abe T; Osakada K Chem Asian J; 2012 Jan; 7(1):207-13. PubMed ID: 22034229 [TBL] [Abstract][Full Text] [Related]
12. Structural, energetic, and dynamical properties of rotaxanes constituted of alpha-cyclodextrins and an azobenzene chain. Briquet L; Staelens N; Leherte L; Vercauteren DP J Mol Graph Model; 2007 Jul; 26(1):104-16. PubMed ID: 17161967 [TBL] [Abstract][Full Text] [Related]
13. Unraveling unidirectional threading of α-cyclodextrin in a [2]rotaxane through spin labeling approach. Casati C; Franchi P; Pievo R; Mezzina E; Lucarini M J Am Chem Soc; 2012 Nov; 134(46):19108-17. PubMed ID: 23106205 [TBL] [Abstract][Full Text] [Related]
14. Structure and stability of (alpha-CD)3 aggregate and OEG@(alpha-CD)3 pseudorotaxane in aqueous solution: a molecular dynamics study. Anconi CP; Nascimento CS; De Almeida WB; Dos Santos HF J Phys Chem B; 2009 Jul; 113(29):9762-9. PubMed ID: 19603839 [TBL] [Abstract][Full Text] [Related]
15. Halotriazolium axle functionalised [2]rotaxanes for anion recognition: investigating the effects of halogen-bond donor and preorganisation. Mercurio JM; Knighton RC; Cookson J; Beer PD Chemistry; 2014 Sep; 20(37):11740-9. PubMed ID: 25112862 [TBL] [Abstract][Full Text] [Related]
16. Insights into the Difference Between Rotaxane and Pseudorotaxane. Sun HL; Zhang HY; Dai Z; Han X; Liu Y Chem Asian J; 2017 Jan; 12(2):265-270. PubMed ID: 27897389 [TBL] [Abstract][Full Text] [Related]
17. Light-switchable Janus [2]rotaxanes based on α-cyclodextrin derivatives bearing two recognition sites linked with oligo(ethylene glycol). Li S; Taura D; Hashidzume A; Harada A Chem Asian J; 2010 Oct; 5(10):2281-9. PubMed ID: 20669215 [TBL] [Abstract][Full Text] [Related]
18. An artificial molecular chaperone: poly-pseudo-rotaxane with an extensible axle. Osaki M; Takashima Y; Yamaguchi H; Harada A J Am Chem Soc; 2007 Nov; 129(46):14452-7. PubMed ID: 17973382 [TBL] [Abstract][Full Text] [Related]
19. Rotaxanes Capped with Host Molecules: Supramolecular Behavior of Adamantylated Bisimidazolium Salts Containing a Biphenyl Centerpiece. Branná P; Rouchal M; Prucková Z; Dastychová L; Lenobel R; Pospíšil T; Maláč K; Vícha R Chemistry; 2015 Aug; 21(33):11712-8. PubMed ID: 26140503 [TBL] [Abstract][Full Text] [Related]
20. Preparation of alpha-cyclodextrin-terminated polyrotaxane consisting of beta-cyclodextrins and pluronic as a building block of a biodegradable network. Ooya T; Ito A; Yui N Macromol Biosci; 2005 May; 5(5):379-83. PubMed ID: 15895475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]