BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26914710)

  • 1. Combined numerical and experimental biomechanical characterization of soft collagen hydrogel substrate.
    Castro AP; Laity P; Shariatzadeh M; Wittkowske C; Holland C; Lacroix D
    J Mater Sci Mater Med; 2016 Apr; 27(4):79. PubMed ID: 26914710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poroelastic Modeling of Highly Hydrated Collagen Hydrogels: Experimental Results vs. Numerical Simulation With Custom and Commercial Finite Element Solvers.
    Castro APG; Yao J; Battisti T; Lacroix D
    Front Bioeng Biotechnol; 2018; 6():142. PubMed ID: 30406091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and construction of a novel measurement device for mechanical characterization of hydrogels: A case study.
    Shahab S; Kasra M; Dolatshahi-Pirouz A
    PLoS One; 2021; 16(2):e0247727. PubMed ID: 33630967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poroelastic Characterization and Modeling of Subcutaneous Tissue Under Confined Compression.
    Barsimantov J; Payne J; de Lucio M; Hakim M; Gomez H; Solorio L; Tepole AB
    Ann Biomed Eng; 2024 Jun; 52(6):1638-1652. PubMed ID: 38472602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A protocol for rheological characterization of hydrogels for tissue engineering strategies.
    Zuidema JM; Rivet CJ; Gilbert RJ; Morrison FA
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1063-73. PubMed ID: 24357498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new constitutive model for hydration-dependent mechanical properties in biological soft tissues and hydrogels.
    Gao X; Gu W
    J Biomech; 2014 Sep; 47(12):3196-200. PubMed ID: 25001202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A; Navidbakhsh M
    Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micromechanical study of the load transfer in a polycaprolactone-collagen hybrid scaffold when subjected to unconfined and confined compression.
    Castro APG; Lacroix D
    Biomech Model Mechanobiol; 2018 Apr; 17(2):531-541. PubMed ID: 29129026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined experimental and computational characterization of crosslinked collagen-based hydrogels.
    Valero C; Amaveda H; Mora M; García-Aznar JM
    PLoS One; 2018; 13(4):e0195820. PubMed ID: 29664953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheological study of in-situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin.
    Vulpe R; Le Cerf D; Dulong V; Popa M; Peptu C; Verestiuc L; Picton L
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():388-97. PubMed ID: 27612727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load.
    Kocen R; Gasik M; Gantar A; Novak S
    Biomed Mater; 2017 Mar; 12(2):025004. PubMed ID: 28106535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poro-viscoelastic constitutive modeling of unconfined creep of hydrogels using finite element analysis with integrated optimization method.
    Liu K; Ovaert TC
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):440-50. PubMed ID: 21316632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical implementation of an osmo-poro-visco-hyperelastic finite element solver: application to the intervertebral disc.
    Castro APG; Alves JL
    Comput Methods Biomech Biomed Engin; 2021 Apr; 24(5):538-550. PubMed ID: 33111576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels.
    Jin T; Stanciulescu I
    Acta Biomater; 2017 Feb; 49():247-259. PubMed ID: 27856282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogels for lung tissue engineering: Biomechanical properties of thin collagen-elastin constructs.
    Dunphy SE; Bratt JA; Akram KM; Forsyth NR; El Haj AJ
    J Mech Behav Biomed Mater; 2014 Oct; 38():251-9. PubMed ID: 24809968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silk-Reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture.
    Sanz-Fraile H; Amoros S; Mendizabal I; Galvez-Monton C; Prat-Vidal C; Bayes-Genis A; Navajas D; Farre R; Otero J
    Tissue Eng Part A; 2020 Mar; 26(5-6):358-370. PubMed ID: 32085691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poisson's ratio of bovine meniscus determined combining unconfined and confined compression.
    Danso EK; Julkunen P; Korhonen RK
    J Biomech; 2018 Aug; 77():233-237. PubMed ID: 30055840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanomimetic hydrogels for vocal fold lamina propria regeneration.
    Kutty JK; Webb K
    J Biomater Sci Polym Ed; 2009; 20(5-6):737-56. PubMed ID: 19323887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A linear, biphasic model incorporating a brinkman term to describe the mechanics of cell-seeded collagen hydrogels.
    Galie PA; Spilker RL; Stegemann JP
    Ann Biomed Eng; 2011 Nov; 39(11):2767-79. PubMed ID: 21822739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties.
    Buitrago JO; Patel KD; El-Fiqi A; Lee JH; Kundu B; Lee HH; Kim HW
    Acta Biomater; 2018 Mar; 69():218-233. PubMed ID: 29410166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.