These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 2691473)

  • 21. [Heat resistance of the skeletal muscle in western palearctic green frogs (Rana esculenta complex)].
    Litvinchuk SN; Pashkov IM; Rozanov IuM; Borkin LIa
    Izv Akad Nauk Ser Biol; 2007; (1):75-81. PubMed ID: 17352203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sound-power collection by the auditory periphery of the mongolian gerbil Meriones unguiculatus. II. External-ear radiation impedance and power collection.
    Ravicz ME; Rosowski JJ; Voigt HF
    J Acoust Soc Am; 1996 May; 99(5):3044-63. PubMed ID: 8642116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans.
    Sun XM; Shaver MD
    Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison between distortion product otoacoustic emissions and nerve fiber responses from the basilar papilla of the frog.
    Meenderink SW; van Dijk P; Narins PM
    J Acoust Soc Am; 2005 May; 117(5):3165-73. PubMed ID: 15957784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spontaneous, click-, and toneburst-evoked otoacoustic emissions from normal ears.
    Probst R; Coats AC; Martin GK; Lonsbury-Martin BL
    Hear Res; 1986; 21(3):261-75. PubMed ID: 3722006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noise in magnetic resonance imaging: no risk for sensorineural function but increased amplitude variability of otoacoustic emissions.
    Wagner W; Staud I; Frank G; Dammann F; Plontke S; Plinkert PK
    Laryngoscope; 2003 Jul; 113(7):1216-23. PubMed ID: 12838022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)].
    Hoth S
    Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maturation of the occlusion effect: a bone conduction auditory steady state response study in infants and adults with normal hearing.
    Small SA; Hu N
    Ear Hear; 2011; 32(6):708-19. PubMed ID: 21617531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of temperature and darkness on testosterone concentration in the testes of intact frogs (Rana esculenta) treated with gonadotrophin-releasing hormone analog (HOE 766).
    Pierantoni R; Minucci S; Di Matteo L; Fasano S; Varriale B; Chieffi G
    Gen Comp Endocrinol; 1985 Apr; 58(1):128-30. PubMed ID: 3921425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spontaneous otoacoustic emissions measured using an open ear-canal recording technique.
    Boul A; Lineton B
    Hear Res; 2010 Oct; 269(1-2):112-21. PubMed ID: 20600736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Level dependence of distortion product otoacoustic emissions in the leopard frog, Rana pipiens pipiens.
    Meenderink SW; van Dijk P
    Hear Res; 2004 Jun; 192(1-2):107-18. PubMed ID: 15157969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous otoacoustic emissions in two gecko species, Gekko gecko and Eublepharis macularius.
    Manley GA; Gallo L; Koppl C
    J Acoust Soc Am; 1996 Mar; 99(3):1588-603. PubMed ID: 8819855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frequency shift of individual spontaneous otoacoustic emissions in preterm infants.
    Brienesse P; Anteunis LJ; Maertzdorf WJ; Blanco CE; Manni JJ
    Pediatr Res; 1997 Oct; 42(4):478-83. PubMed ID: 9380439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Further tests of the local nonlinear interaction-based mechanism for simultaneous suppression of tone burst-evoked otoacoustic emissions.
    Killan EC; Lutman ME; Thyer NJ
    Hear Res; 2015 Jan; 319():12-24. PubMed ID: 25446244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Transitory evoked otoacoustic emissions and distortion product emissions in disorders of middle ear ventilation].
    Schmuziger N; Hauser R; Probst R
    HNO; 1996 Jun; 44(6):319-23. PubMed ID: 8767128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature effects on auditory nerve fiber response in the American bullfrog.
    van Dijk P; Lewis ER; Wit HP
    Hear Res; 1990 Mar; 44(2-3):231-40. PubMed ID: 2329096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frequency characteristics of sound transmission in middle ears from Norwegian cattle, and the effect of static pressure differences across the tympanic membrane and the footplate.
    Kringlebotn M
    J Acoust Soc Am; 2000 Mar; 107(3):1442-50. PubMed ID: 10738799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spontaneous otoacoustic emissions: incidence and short-time variability in normal ears.
    Lind O; Randa JS
    J Otolaryngol; 1990 Aug; 19(4):252-9. PubMed ID: 2213998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circannual rhythm of the melanin content in frog liver (Rana esculenta L.).
    Corsaro C; Scalia M; Sinatra F; Sichel G
    Pigment Cell Res; 1990; 3(2):120-2. PubMed ID: 2385566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlated amplitude fluctuations of spontaneous otoacoustic emissions.
    van Dijk P; Wit HP
    J Acoust Soc Am; 1998 Jul; 104(1):336-43. PubMed ID: 9670526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.