These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 26915092)

  • 21. Biooxidation of fatty acid distillates to dibasic acids by a mutant of Candida tropicalis.
    Gangopadhyay S; Nandi S; Ghosh S
    J Oleo Sci; 2006; 56(1):13-7. PubMed ID: 17693693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oleaginous yeasts: Promising platforms for the production of oleochemicals and biofuels.
    Adrio JL
    Biotechnol Bioeng; 2017 Sep; 114(9):1915-1920. PubMed ID: 28498495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repression of fatty-acyl-CoA oxidase-encoding gene expression is not necessarily a determinant of high-level production of dicarboxylic acids in industrial dicarboxylic-acid-producing Candida tropicalis.
    Hara A; Ueda M; Matsui T; Arie M; Saeki H; Matsuda H; Furuhashi K; Kanai T; Tanaka A
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):478-85. PubMed ID: 11549023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata.
    Xu N; Liu L; Zou W; Liu J; Hua Q; Chen J
    Mol Biosyst; 2013 Feb; 9(2):205-16. PubMed ID: 23172360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current advances in Candida tropicalis: Yeast overview and biotechnological applications.
    Queiroz SS; Jofre FM; Bianchini IA; Boaes TDS; Bordini FW; Chandel AK; Felipe MDGA
    Biotechnol Appl Biochem; 2023 Dec; 70(6):2069-2087. PubMed ID: 37694532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Candida guilliermondii as a potential biocatalyst for the production of long-chain α,ω-dicarboxylic acids.
    Werner N; Dreyer M; Wagner W; Papon N; Rupp S; Zibek S
    Biotechnol Lett; 2017 Mar; 39(3):429-438. PubMed ID: 27904981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-scale metabolic modeling of Mucor circinelloides and comparative analysis with other oleaginous species.
    Vongsangnak W; Klanchui A; Tawornsamretkit I; Tatiyaborwornchai W; Laoteng K; Meechai A
    Gene; 2016 Jun; 583(2):121-129. PubMed ID: 26911256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biotechnological production of bio-based long-chain dicarboxylic acids with oleogenious yeasts.
    Werner N; Zibek S
    World J Microbiol Biotechnol; 2017 Oct; 33(11):194. PubMed ID: 28983758
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of adipic acid by short- and long-chain fatty acid acyl-CoA oxidase engineered in yeast Candida tropicalis.
    Ju JH; Oh BR; Heo SY; Lee YU; Shon JH; Kim CH; Kim YM; Seo JW; Hong WK
    Bioprocess Biosyst Eng; 2020 Jan; 43(1):33-43. PubMed ID: 31549308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Study on fermentation of n-paraffin for producing mixed dicarboxylic acids].
    Tong M; Li S; Fang X
    Wei Sheng Wu Xue Bao; 2002 Feb; 42(1):114-6. PubMed ID: 12557359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthesis of monomers for plastics from renewable oils.
    Lu W; Ness JE; Xie W; Zhang X; Minshull J; Gross RA
    J Am Chem Soc; 2010 Nov; 132(43):15451-5. PubMed ID: 20936848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and functional characterization of a lipid droplet protein CtLDP1 from an oleaginous yeast Candida tropicalis SY005.
    Chattopadhyay A; Singh R; Mitra M; Das AK; Maiti MK
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Aug; 1865(8):158725. PubMed ID: 32320743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of two sugar transporters responsible for efficient xylose uptake in an oleaginous yeast Candida tropicalis SY005.
    Chattopadhyay A; Singh R; Das AK; Maiti MK
    Arch Biochem Biophys; 2020 Nov; 695():108645. PubMed ID: 33122161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional characterization of two structurally novel diacylglycerol acyltransferase2 isozymes responsible for the enhanced production of stearate-rich storage lipid in Candida tropicalis SY005.
    Dey P; Chakraborty M; Kamdar MR; Maiti MK
    PLoS One; 2014; 9(4):e94472. PubMed ID: 24732323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mid-Long Chain Dicarboxylic Acid Production via Systems Metabolic Engineering: Progress and Prospects.
    Gu S; Zhu F; Zhang L; Wen J
    J Agric Food Chem; 2024 Mar; 72(11):5555-5573. PubMed ID: 38442481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated bioinformatics, modelling, and gene expression analysis of the putative pentose transporter from Candida tropicalis during xylose fermentation with and without glucose addition.
    Queiroz SS; Oliva B; Silva TF; Segato F; Felipe MGA
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4587-4606. PubMed ID: 35708749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Metabolism and beta-oxidation of alkane-utilizing Candida tropicalis].
    Liu S; Jiao P; Cao Z
    Wei Sheng Wu Xue Bao; 2002 Feb; 42(1):125-8. PubMed ID: 12557362
    [No Abstract]   [Full Text] [Related]  

  • 38. Metabolic flux analysis of Candida tropicalis growing on xylose in an oxygen-limited chemostat.
    Granström T; Aristidou AA; Leisola M
    Metab Eng; 2002 Jul; 4(3):248-56. PubMed ID: 12616694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Study on fermentation of 1,13-tridecanedioic acid by Candida tropicalis].
    Liu S; Li S; Fang X
    Wei Sheng Wu Xue Bao; 2000 Jun; 40(3):318-22. PubMed ID: 12548999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic Engineering of
    Xu J; Xia Y; Shi Y; Zhu M; Zhang H; Gui X; Shen W; Yang H; Chen X
    ACS Synth Biol; 2024 Aug; 13(8):2533-2544. PubMed ID: 39090815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.