BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 26915474)

  • 1. Thermal Transport Driven by Extraneous Nanoparticles and Phase Segregation in Nanostructured Mg2(Si,Sn) and Estimation of Optimum Thermoelectric Performance.
    Tazebay AS; Yi SI; Lee JK; Kim H; Bahk JH; Kim SL; Park SD; Lee HS; Shakouri A; Yu C
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7003-12. PubMed ID: 26915474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoelectric performance enhancement of Mg2Sn based solid solutions by band convergence and phonon scattering via Pb and Si/Ge substitution for Sn.
    Mao J; Wang Y; Ge B; Jie Q; Liu Z; Saparamadu U; Liu W; Ren Z
    Phys Chem Chem Phys; 2016 Jul; 18(30):20726-37. PubMed ID: 27412367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergetic effect of Zn substitution on the electron and phonon transport in Mg2Si0.5Sn0.5-based thermoelectric materials.
    Gao H; Zhu T; Zhao X; Deng Y
    Dalton Trans; 2014 Oct; 43(37):14072-8. PubMed ID: 25118956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced Thermal Conductivity of Mg
    Zhou Z; Chai YW; Ikuta Y; Lee Y; Lin Y; Kimura Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19547-19552. PubMed ID: 32243125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoelectric Properties of Bi-Doped Magnesium Silicide Stannides.
    Macario LR; Cheng X; Ramirez D; Mori T; Kleinke H
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40585-40591. PubMed ID: 30387592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using crystallographic shear to reduce lattice thermal conductivity: high temperature thermoelectric characterization of the spark plasma sintered Magnéli phases WO2.90 and WO2.722.
    Kieslich G; Veremchuk I; Antonyshyn I; Zeier WG; Birkel CS; Weldert K; Heinrich CP; Visnow E; Panthöfer M; Burkhardt U; Grin Y; Tremel W
    Phys Chem Chem Phys; 2013 Oct; 15(37):15399-403. PubMed ID: 23936907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase Segregation and Superior Thermoelectric Properties of Mg2Si(1-x)Sb(x) (0 ≤ x ≤ 0.025) Prepared by Ultrafast Self-Propagating High-Temperature Synthesis.
    Zhang Q; Su X; Yan Y; Xie H; Liang T; You Y; Tang X; Uher C
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3268-76. PubMed ID: 26780919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced thermoelectric performance of rough silicon nanowires.
    Hochbaum AI; Chen R; Delgado RD; Liang W; Garnett EC; Najarian M; Majumdar A; Yang P
    Nature; 2008 Jan; 451(7175):163-7. PubMed ID: 18185582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tin Acceptor Doping Enhanced Thermoelectric Performance of n-Type Yb Single-Filled Skutterudites via Reduced Electronic Thermal Conductivity.
    Qin D; Cui B; Yin L; Zhao X; Zhang Q; Cao J; Cai W; Sui J
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25133-25139. PubMed ID: 31268650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe.
    Zhao LD; Zhang X; Wu H; Tan G; Pei Y; Xiao Y; Chang C; Wu D; Chi H; Zheng L; Gong S; Uher C; He J; Kanatzidis MG
    J Am Chem Soc; 2016 Feb; 138(7):2366-73. PubMed ID: 26871965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-precipitation synthesis of nanostructured Cu3SbSe4 and its Sn-doped sample with high thermoelectric performance.
    Li D; Li R; Qin XY; Song CJ; Xin HX; Wang L; Zhang J; Guo GL; Zou TH; Liu YF; Zhu XG
    Dalton Trans; 2014 Jan; 43(4):1888-96. PubMed ID: 24264386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase separation in bismuth doped Mg
    Cahana M; Hayun H; Gelbstein Y
    Phys Chem Chem Phys; 2022 Sep; 24(35):21223-21232. PubMed ID: 36040246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity.
    Saparamadu U; Li C; He R; Zhu H; Ren Z; Mao J; Song S; Sun J; Chen S; Zhang Q; Nielsch K; Broido D; Ren Z
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):511-516. PubMed ID: 30525424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon Scattering and Suppression of Bipolar Effect in MgO/VO
    Back SY; Yun JH; Cho H; Kim G; Rhyee JS
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34066166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AgCl Addition to Chalcopyrite Compound for Ultra-Low Thermal Conductivity in Realizing High ZT Thermoelectric Materials.
    Zhang Z; Luo S; Yu L; Wei S; Ji Z; Li W; Ang LK; Zheng S
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):35178-35185. PubMed ID: 37432880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoelectric performance of n-type Mg
    Santos R; Nancarrow M; Dou SX; Aminorroaya Yamini S
    Sci Rep; 2017 Jun; 7(1):3988. PubMed ID: 28638080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Thermoelectric Performance by Strong Phonon Scattering at the Heterogeneous Interfaces of the Mg
    Zhu Y; Han Z; Han B; Jiang F; Wu X; Han CG; Deng Y; Liu W
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56164-56170. PubMed ID: 34784190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High ZT in p-type (PbTe)1-2x(PbSe)x(PbS)x thermoelectric materials.
    Korkosz RJ; Chasapis TC; Lo SH; Doak JW; Kim YJ; Wu CI; Hatzikraniotis E; Hogan TP; Seidman DN; Wolverton C; Dravid VP; Kanatzidis MG
    J Am Chem Soc; 2014 Feb; 136(8):3225-37. PubMed ID: 24533466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano- and Microstructure Engineering: An Effective Method for Creating High Efficiency Magnesium Silicide Based Thermoelectrics.
    Farahi N; Prabhudev S; Botton GA; Salvador JR; Kleinke H
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34431-34437. PubMed ID: 27998120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low effective mass and carrier concentration optimization for high performance p-type Mg2(1-x)Li2xSi0.3Sn0.7 solid solutions.
    Zhang Q; Cheng L; Liu W; Zheng Y; Su X; Chi H; Liu H; Yan Y; Tang X; Uher C
    Phys Chem Chem Phys; 2014 Nov; 16(43):23576-83. PubMed ID: 25178356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.