These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26915475)

  • 1. Orthogonal Protein Assembly on DNA Nanostructures Using Relaxases.
    Sagredo S; Pirzer T; Aghebat Rafat A; Goetzfried MA; Moncalian G; Simmel FC; de la Cruz F
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4348-52. PubMed ID: 26915475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of Novel Relaxase Substrates Based on Rolling Circle Replicases for Bioconjugation to DNA Nanostructures.
    Sagredo S; de la Cruz F; Moncalián G
    PLoS One; 2016; 11(3):e0152666. PubMed ID: 27027740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high security double lock and key mechanism in HUH relaxases controls oriT-processing for plasmid conjugation.
    Carballeira JD; González-Pérez B; Moncalián G; de la Cruz F
    Nucleic Acids Res; 2014; 42(16):10632-43. PubMed ID: 25123661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new domain of conjugative relaxase TrwC responsible for efficient oriT-specific recombination on minimal target sequences.
    César CE; Machón C; de la Cruz F; Llosa M
    Mol Microbiol; 2006 Nov; 62(4):984-96. PubMed ID: 17038118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swapping single-stranded DNA sequence specificities of relaxases from conjugative plasmids F and R100.
    Harley MJ; Schildbach JF
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11243-8. PubMed ID: 14504391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome.
    González-Prieto C; Gabriel R; Dehio C; Schmidt M; Llosa M
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28411218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific recombinase and integrase activities of a conjugative relaxase in recipient cells.
    Draper O; César CE; Machón C; de la Cruz F; Llosa M
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16385-90. PubMed ID: 16260740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The secret life of conjugative relaxases.
    Guzmán-Herrador DL; Llosa M
    Plasmid; 2019 Jul; 104():102415. PubMed ID: 31103521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nicking by transesterification: the reaction catalysed by a relaxase.
    Byrd DR; Matson SW
    Mol Microbiol; 1997 Sep; 25(6):1011-22. PubMed ID: 9350859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Completing the specificity swap: Single-stranded DNA recognition by F and R100 TraI relaxase domains.
    Guja KE; Schildbach JF
    Plasmid; 2015 Jul; 80():1-7. PubMed ID: 25841886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salting-Out of DNA Origami Nanostructures by Ammonium Sulfate.
    Hanke M; Hansen N; Chen R; Grundmeier G; Fahmy K; Keller A
    Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxases and Plasmid Transfer in Gram-Negative Bacteria.
    Zechner EL; Moncalián G; de la Cruz F
    Curr Top Microbiol Immunol; 2017; 413():93-113. PubMed ID: 29536356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing Uniquely Addressable Bio-orthogonal Synthetic Scaffolds for DNA and RNA Origami.
    Kozyra J; Ceccarelli A; Torelli E; Lopiccolo A; Gu JY; Fellermann H; Stimming U; Krasnogor N
    ACS Synth Biol; 2017 Jul; 6(7):1140-1149. PubMed ID: 28414914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of the minimal relaxase domain of MobA at 2.1 A resolution.
    Monzingo AF; Ozburn A; Xia S; Meyer RJ; Robertus JD
    J Mol Biol; 2007 Feb; 366(1):165-78. PubMed ID: 17157875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron Microscopic Visualization of Protein Assemblies on Flattened DNA Origami.
    Mallik L; Dhakal S; Nichols J; Mahoney J; Dosey AM; Jiang S; Sunahara RK; Skiniotis G; Walter NG
    ACS Nano; 2015 Jul; 9(7):7133-41. PubMed ID: 26149412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition and processing of the origin of transfer DNA by conjugative relaxase TrwC.
    Guasch A; Lucas M; Moncalián G; Cabezas M; Pérez-Luque R; Gomis-Rüth FX; de la Cruz F; Coll M
    Nat Struct Biol; 2003 Dec; 10(12):1002-10. PubMed ID: 14625590
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Knappe GA; Wamhoff EC; Read BJ; Irvine DJ; Bathe M
    ACS Nano; 2021 Sep; 15(9):14316-14322. PubMed ID: 34490781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Energy Landscape for the Self-Assembly of a Two-Dimensional DNA Origami Complex.
    Fern J; Lu J; Schulman R
    ACS Nano; 2016 Feb; 10(2):1836-44. PubMed ID: 26820483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-Immobilization of Proteins and DNA Origami Nanoplates to Produce High-Contrast Biomolecular Nanoarrays.
    Hager R; Burns JR; Grydlik MJ; Halilovic A; Haselgrübler T; Schäffler F; Howorka S
    Small; 2016 Jun; 12(21):2877-84. PubMed ID: 27062557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.