BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26915597)

  • 1. A Lattice-Strained Organic Single-Crystal Nanowire Array Fabricated via Solution-Phase Nanograting-Assisted Pattern Transfer for Use in High-Mobility Organic Field-Effect Transistors.
    Kim K; Rho Y; Kim Y; Kim SH; Hahm SG; Park CE
    Adv Mater; 2016 Apr; 28(16):3209-15. PubMed ID: 26915597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanowires: A Lattice-Strained Organic Single-Crystal Nanowire Array Fabricated via Solution-Phase Nanograting-Assisted Pattern Transfer for Use in High-Mobility Organic Field-Effect Transistors (Adv. Mater. 16/2016).
    Kim K; Rho Y; Kim Y; Kim SH; Hahm SG; Park CE
    Adv Mater; 2016 Apr; 28(16):3034. PubMed ID: 27105809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance, all-solution-processed organic nanowire transistor arrays with inkjet-printing patterned electrodes.
    Liu N; Zhou Y; Ai N; Luo C; Peng J; Wang J; Pei J; Cao Y
    Langmuir; 2011 Dec; 27(24):14710-5. PubMed ID: 22043855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance air-stable single-crystal organic nanowires based on a new indolocarbazole derivative for field-effect transistors.
    Park KS; Salunkhe SM; Lim I; Cho CG; Han SH; Sung MM
    Adv Mater; 2013 Jun; 25(24):3351-6. PubMed ID: 23696130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repurposing compact discs as master molds to fabricate high-performance organic nanowire field-effect transistors.
    Kim K; Cho J; Jhon H; Jeon J; Kang M; Eon Park C; Lee J; Kyu An T
    Nanotechnology; 2017 May; 28(20):205304. PubMed ID: 28445166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-speed graphene transistors with a self-aligned nanowire gate.
    Liao L; Lin YC; Bao M; Cheng R; Bai J; Liu Y; Qu Y; Wang KL; Huang Y; Duan X
    Nature; 2010 Sep; 467(7313):305-8. PubMed ID: 20811365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning charge transport in solution-sheared organic semiconductors using lattice strain.
    Giri G; Verploegen E; Mannsfeld SC; Atahan-Evrenk S; Kim DH; Lee SY; Becerril HA; Aspuru-Guzik A; Toney MF; Bao Z
    Nature; 2011 Dec; 480(7378):504-8. PubMed ID: 22193105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High electron mobility InAs nanowire field-effect transistors.
    Dayeh SA; Aplin DP; Zhou X; Yu PK; Yu ET; Wang D
    Small; 2007 Feb; 3(2):326-32. PubMed ID: 17199246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field-effect transistors from lithographically patterned cadmium selenide nanowire arrays.
    Ayvazian T; Xing W; Yan W; Penner RM
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4445-52. PubMed ID: 22957809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution processable multi-channel ZnO nanowire field-effect transistors with organic gate dielectric.
    Opoku C; Hoettges KF; Hughes MP; Stolojan V; Silva SR; Shkunov M
    Nanotechnology; 2013 Oct; 24(40):405203. PubMed ID: 24029562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing.
    Chang YK; Hong FC
    Nanotechnology; 2009 May; 20(19):195302. PubMed ID: 19420638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Mobility 6,13-Bis(triisopropylsilylethynyl) Pentacene Transistors Using Solution-Processed Polysilsesquioxane Gate Dielectric Layers.
    Matsuda Y; Nakahara Y; Michiura D; Uno K; Tanaka I
    J Nanosci Nanotechnol; 2016 Apr; 16(4):3273-6. PubMed ID: 27451616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic field effect transistor using pentacene single crystals grown by a liquid-phase crystallization process.
    Kimura Y; Niwano M; Ikuma N; Goushi K; Itaya K
    Langmuir; 2009 May; 25(9):4861-3. PubMed ID: 19397347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transparent metal oxide nanowire transistors.
    Chen D; Liu Z; Liang B; Wang X; Shen G
    Nanoscale; 2012 May; 4(10):3001-12. PubMed ID: 22495655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-stacked single-crystal organic nanowire p-n nanojunction arrays by nanotransfer printing.
    Park KS; Lee KS; Kang CM; Baek J; Han KS; Lee C; Koo Lee YE; Kang Y; Sung MM
    Nano Lett; 2015 Jan; 15(1):289-93. PubMed ID: 25470380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambipolar organic field-effect transistors based on solution-processed single crystal microwires of a quinoidal oligothiophene derivative.
    Ribierre JC; Zhao L; Furukawa S; Kikitsu T; Inoue D; Muranaka A; Takaishi K; Muto T; Matsumoto S; Hashizume D; Uchiyama M; André P; Adachi C; Aoyama T
    Chem Commun (Camb); 2015 Apr; 51(27):5836-9. PubMed ID: 25686576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformable Organic Nanowire Field-Effect Transistors.
    Lee Y; Oh JY; Kim TR; Gu X; Kim Y; Wang GN; Wu HC; Pfattner R; To JWF; Katsumata T; Son D; Kang J; Matthews JR; Niu W; He M; Sinclair R; Cui Y; Tok JB; Lee TW; Bao Z
    Adv Mater; 2018 Feb; 30(7):. PubMed ID: 29315845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-voltage SnO₂ nanowire transistors gated by solution-processed chitosan-based proton conductors.
    Liu H; Wan Q
    Nanoscale; 2012 Aug; 4(15):4481-4. PubMed ID: 22760731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled self-assembly of functional metal octaethylporphyrin 1 D nanowires by solution-phase precipitative method.
    So MH; Roy VA; Xu ZX; Chui SS; Yuen MY; Ho CM; Che CM
    Chem Asian J; 2008 Nov; 3(11):1968-78. PubMed ID: 18767102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laterally-stacked, solution-processed organic microcrystal with ambipolar charge transport behavior.
    Shim H; Kumar A; Cho H; Yang D; Palai AK; Pyo S
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17804-14. PubMed ID: 25244525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.