BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 26916511)

  • 1. An integrated computational approach for aortic mechanics including geometric, histological and chemico-physical data.
    Bianchi D; Marino M; Vairo G
    J Biomech; 2016 Aug; 49(12):2331-40. PubMed ID: 26916511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constitutive modeling of ascending thoracic aortic aneurysms using microstructural parameters.
    Pasta S; Phillippi JA; Tsamis A; D'Amore A; Raffa GM; Pilato M; Scardulla C; Watkins SC; Wagner WR; Gleason TG; Vorp DA
    Med Eng Phys; 2016 Feb; 38(2):121-30. PubMed ID: 26669606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanics of the pulmonary valve in the aortic position.
    Soares AL; van Geemen D; van den Bogaerdt AJ; Oomens CW; Bouten CV; Baaijens FP
    J Mech Behav Biomed Mater; 2014 Jan; 29():557-67. PubMed ID: 24035437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of fiber dispersion on the mechanical response of aortic tissues in health and disease: a computational study.
    Niestrawska JA; Ch Haspinger D; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(2):99-112. PubMed ID: 29436874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementing a micromechanical model into a finite element code to simulate the mechanical and microstructural response of arteries.
    Bianchi D; Morin C; Badel P
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2553-2566. PubMed ID: 32607921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.
    Polzer S; Gasser TC; Novak K; Man V; Tichy M; Skacel P; Bursa J
    Acta Biomater; 2015 Mar; 14():133-45. PubMed ID: 25458466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics.
    Sturla F; Votta E; Stevanella M; Conti CA; Redaelli A
    Med Eng Phys; 2013 Dec; 35(12):1721-30. PubMed ID: 24001692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A FSI computational framework for vascular physiopathology: A novel flow-tissue multiscale strategy.
    Bianchi D; Monaldo E; Gizzi A; Marino M; Filippi S; Vairo G
    Med Eng Phys; 2017 Sep; 47():25-37. PubMed ID: 28690045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On multiscale boundary conditions in the computational homogenization of an RVE of tendon fascicles.
    Carniel TA; Klahr B; Fancello EA
    J Mech Behav Biomed Mater; 2019 Mar; 91():131-138. PubMed ID: 30579110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consistent trilayer biomechanical modeling of aortic valve leaflet tissue.
    Bakhaty AA; Govindjee S; Mofrad MRK
    J Biomech; 2017 Aug; 61():1-10. PubMed ID: 28830591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving finite element results in modeling heart valve mechanics.
    Earl E; Mohammadi H
    Proc Inst Mech Eng H; 2018 Jul; 232(7):718-725. PubMed ID: 29879869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arterial mechanics considering the structural and mechanical contributions of ECM constituents.
    Wang Y; Zeinali-Davarani S; Zhang Y
    J Biomech; 2016 Aug; 49(12):2358-65. PubMed ID: 26947034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity analysis for the mechanics of tendons and ligaments: Investigation on the effects of collagen structural properties via a multiscale modeling approach.
    Hamdia KM; Marino M; Zhuang X; Wriggers P; Rabczuk T
    Int J Numer Method Biomed Eng; 2019 Aug; 35(8):e3209. PubMed ID: 30989796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct and inverse identification of constitutive parameters from the structure of soft tissues. Part 1: micro- and nanostructure of collagen fibers.
    Marino M; von Hoegen M; Schröder J; Wriggers P
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1011-1036. PubMed ID: 29492724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress and strain localization in stretched collagenous tissues via a multiscale modelling approach.
    Marino M; Vairo G
    Comput Methods Biomech Biomed Engin; 2014; 17(1):11-30. PubMed ID: 22525051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics of pulmonary airways: Linking structure to function through constitutive modeling, biochemistry, and histology.
    Eskandari M; Nordgren TM; O'Connell GD
    Acta Biomater; 2019 Oct; 97():513-523. PubMed ID: 31330329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical behavior of metastatic femurs through patient-specific computational models accounting for bone-metastasis interaction.
    Falcinelli C; Di Martino A; Gizzi A; Vairo G; Denaro V
    J Mech Behav Biomed Mater; 2019 May; 93():9-22. PubMed ID: 30738327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and intermolecular effects in collagen fibril mechanics: a multiscale analytical model compared with atomistic and experimental studies.
    Marino M
    Biomech Model Mechanobiol; 2016 Feb; 15(1):133-54. PubMed ID: 26220454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress softening and permanent deformation in human aortas: Continuum and computational modeling with application to arterial clamping.
    Fereidoonnezhad B; Naghdabadi R; Holzapfel GA
    J Mech Behav Biomed Mater; 2016 Aug; 61():600-616. PubMed ID: 27233103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limiting extensibility constitutive model with distributed fibre orientations and ageing of abdominal aorta.
    Horný L; Netušil M; Daniel M
    J Mech Behav Biomed Mater; 2014 Oct; 38():39-51. PubMed ID: 25016175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.