BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 26916535)

  • 1. Effect of photoanode surface coverage by a sensitizer on the photovoltaic performance of titania based CdS quantum dot sensitized solar cells.
    Prasad RM; Pathan HM
    Nanotechnology; 2016 Apr; 27(14):145402. PubMed ID: 26916535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots.
    Muthalif MPA; Sunesh CD; Choe Y
    J Colloid Interface Sci; 2019 Jan; 534():291-300. PubMed ID: 30237116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombination in quantum dot sensitized solar cells.
    Mora-Seró I; Giménez S; Fabregat-Santiago F; Gómez R; Shen Q; Toyoda T; Bisquert J
    Acc Chem Res; 2009 Nov; 42(11):1848-57. PubMed ID: 19722527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the performance of quantum dot sensitized solar cells through CdNiS quantum dots with reduced recombination and enhanced electron lifetime.
    Gopi CV; Venkata-Haritha M; Seo H; Singh S; Kim SK; Shiratani M; Kim HJ
    Dalton Trans; 2016 May; 45(20):8447-57. PubMed ID: 27111597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large pore size and high porosity of TiO2 photoanode for excellent photovoltaic performance of CdS quantum dot sensitized solar cell.
    Shen H; Lin H; Zhao L; Liu Y; Oron D
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1095-100. PubMed ID: 23646579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO2/ZnS/CdS/ZnS heterostructure.
    Lee YS; Gopi CV; Venkata-Haritha M; Kim HJ
    Dalton Trans; 2016 Aug; 45(32):12914-23. PubMed ID: 27477125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control.
    Gopi CV; Venkata-Haritha M; Kim SK; Kim HJ
    Nanoscale; 2015 Aug; 7(29):12552-63. PubMed ID: 26140442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells.
    Tachan Z; Hod I; Shalom M; Grinis L; Zaban A
    Phys Chem Chem Phys; 2013 Mar; 15(11):3841-5. PubMed ID: 23400262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of co-sensitization of InSb quantum dots on enhancing the photoconversion efficiency of CdS based quantum dot sensitized solar cells.
    Archana T; Vijayakumar K; Subashini G; Nirmala Grace A; Arivanandhan M; Jayavel R
    RSC Adv; 2020 Apr; 10(25):14837-14845. PubMed ID: 35497140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic recombination suppression by an inorganic layer and organic dye molecules in highly photostable quantum dot sensitized solar cells.
    Shen H; Li J; Zhao L; Zhang S; Wang W; Oron D; Lin H
    Phys Chem Chem Phys; 2014 Apr; 16(13):6250-6. PubMed ID: 24569752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CuS/CdS Quantum Dot Composite Sensitizer and Its Applications to Various TiO2 Mesoporous Film-Based Solar Cell Devices.
    Kim M; Ochirbat A; Lee HJ
    Langmuir; 2015 Jul; 31(27):7609-15. PubMed ID: 26086801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction.
    Abbas MA; Basit MA; Park TJ; Bang JH
    Phys Chem Chem Phys; 2015 Apr; 17(15):9752-60. PubMed ID: 25773573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of Mn
    Zhang C; Liu S; Liu X; Deng F; Xiong Y; Tsai FC
    R Soc Open Sci; 2018 Mar; 5(3):171712. PubMed ID: 29657776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and photovoltaic properties of CdS quantum dot-sensitized solar cell based on zinc tin mixed metal oxides.
    Cao J; Zhao Y; Zhu Y; Yang X; Shi P; Xiao H; Du N; Hou W; Qi G; Liu J
    J Colloid Interface Sci; 2017 Jul; 498():223-228. PubMed ID: 28334660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocurrent Enhancement of CdSe Quantum-Dot Sensitized Solar Cells Incorporating Single-Walled Carbon Nanotubes.
    Yang J; Lee J; Lee J; Park T; Yi W
    J Nanosci Nanotechnol; 2018 Feb; 18(2):1347-1350. PubMed ID: 29448589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture.
    Chang JY; Lin JM; Su LF; Chang CF
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8740-52. PubMed ID: 23937511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CdS/CdSe-cosensitized TiO₂ photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method.
    Zhu G; Pan L; Xu T; Sun Z
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3146-51. PubMed ID: 21744836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CdSe-CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photo-electrical conversion efficiency.
    Yuan Z; Yin L
    Nanoscale; 2014 Nov; 6(21):13135-44. PubMed ID: 25251160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interface Passivation Effects on the Photovoltaic Performance of Quantum Dot Sensitized Inverse Opal TiO₂ Solar Cells.
    Hori K; Zhang Y; Tusamalee P; Nakazawa N; Yoshihara Y; Wang R; Toyoda T; Hayase S; Shen Q
    Nanomaterials (Basel); 2018 Jun; 8(7):. PubMed ID: 29941828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells.
    Zhu G; Cheng Z; Lv T; Pan L; Zhao Q; Sun Z
    Nanoscale; 2010 Jul; 2(7):1229-32. PubMed ID: 20648354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.