BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 26916609)

  • 1. Fluorescence and phosphorescence of tryptophan in peptides of different length and sequence.
    Radotić K; Melø TB; Leblanc RM; Yousef YA; Naqvi KR
    J Photochem Photobiol B; 2016 Apr; 157():120-8. PubMed ID: 26916609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of the local structure around tryptophan 51 and 64 in recombinant human erythropoietin by tryptophan phosphorescence.
    Kerwin BA; Aoki KH; Gonelli M; Strambini GB
    Photochem Photobiol; 2008; 84(5):1172-81. PubMed ID: 18331401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein in sugar films and in glycerol/water as examined by infrared spectroscopy and by the fluorescence and phosphorescence of tryptophan.
    Wright WW; Guffanti GT; Vanderkooi JM
    Biophys J; 2003 Sep; 85(3):1980-95. PubMed ID: 12944311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luminescence studies with trp repressor and its single-tryptophan mutants.
    Eftink MR; Ramsay GD; Burns L; Maki AH; Mann CJ; Matthews CR; Ghiron CA
    Biochemistry; 1993 Sep; 32(35):9189-98. PubMed ID: 8369286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans.
    Schlyer BD; Schauerte JA; Steel DG; Gafni A
    Biophys J; 1994 Sep; 67(3):1192-202. PubMed ID: 7811933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide sequence and conformation strongly influence tryptophan fluorescence.
    Alston RW; Lasagna M; Grimsley GR; Scholtz JM; Reinhart GD; Pace CN
    Biophys J; 2008 Mar; 94(6):2280-7. PubMed ID: 18065477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminescence studies of perturbation of tryptophan residues of tubulin in the complexes of tubulin with colchicine and colchicine analogues.
    Sardar PS; Maity SS; Das L; Ghosh S
    Biochemistry; 2007 Dec; 46(50):14544-56. PubMed ID: 18041823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual optical resolution of all four tryptophan residues in MPT63 protein by phosphorescence spectroscopy: assignment and significance.
    Ghosh R; Mukherjee M; Chattopadhyay K; Ghosh S
    J Phys Chem B; 2012 Oct; 116(41):12489-500. PubMed ID: 22998652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization and dynamics of tryptophan residues in tetrameric and monomeric soybean agglutinin: studies by steady-state and time-resolved fluorescence, phosphorescence and chemical modification.
    Molla AR; Maity SS; Ghosh S; Mandal DK
    Biochimie; 2009 Jul; 91(7):857-67. PubMed ID: 19383525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the time-resolved absorption and phosphorescence from the tryptophan triplet state in proteins in solution.
    Gershenson A; Gafni A; Steel D
    Photochem Photobiol; 1998 Apr; 67(4):391-8. PubMed ID: 9559583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy atom induced phosphorescence study on the influence of internal structural factors on the photophysics of tryptophan in aqueous solutions.
    Kowalska-Baron A; Gałęcki K; Rożniakowski K; Kolesińska B; Kamiński ZJ; Wysocki S
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():830-7. PubMed ID: 24704600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time resolved fluorescence and phosphorescence properties of the individual tryptophan residues of barnase: evidence for protein-protein interactions.
    De Beuckeleer K; Volckaert G; Engelborghs Y
    Proteins; 1999 Jul; 36(1):42-53. PubMed ID: 10373005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of tryptophan fluorescence spectral shifts and lifetimes arising directly from heterogeneous environment.
    Pan CP; Muiño PL; Barkley MD; Callis PR
    J Phys Chem B; 2011 Mar; 115(12):3245-53. PubMed ID: 21370844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophan 19 residue is the origin of bovine β-lactoglobulin fluorescence.
    Albani JR; Vogelaer J; Bretesche L; Kmiecik D
    J Pharm Biomed Anal; 2014 Mar; 91():144-50. PubMed ID: 24463042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct excitation of tryptophan phosphorescence. A new method for triplet states investigation.
    Chavez J; Ceresa L; Reeks JM; Strzhemechny YM; Kimball J; Kitchner E; Gryczynski Z; Gryczynski I
    Methods Appl Fluoresc; 2022 Feb; 10(2):. PubMed ID: 35042210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence of tryptophan in designed hairpin and Trp-cage miniproteins: measurements of fluorescence yields and calculations by quantum mechanical molecular dynamics simulations.
    McMillan AW; Kier BL; Shu I; Byrne A; Andersen NH; Parson WW
    J Phys Chem B; 2013 Feb; 117(6):1790-809. PubMed ID: 23330783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminescence studies on Bence-Jones proteins and light chains of immunoglobulins and their subunits.
    Longworth JW; McLaughlin CL; Solomon A
    Biochemistry; 1976 Jul; 15(14):2953-8. PubMed ID: 821515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.