BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26916619)

  • 41. ITF2 prevents activation of the β-catenin-TCF4 complex in colon cancer cells and levels decrease with tumor progression.
    Shin HW; Choi H; So D; Kim YI; Cho K; Chung HJ; Lee KH; Chun YS; Cho CH; Kang GH; Kim WH; Park JW
    Gastroenterology; 2014 Aug; 147(2):430-442.e8. PubMed ID: 24846398
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expression of RUNX1 correlates with poor patient prognosis in triple negative breast cancer.
    Ferrari N; Mohammed ZM; Nixon C; Mason SM; Mallon E; McMillan DC; Morris JS; Cameron ER; Edwards J; Blyth K
    PLoS One; 2014; 9(6):e100759. PubMed ID: 24967588
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Axin1's mystique in manipulating microbiome amidst colitis.
    Garrett S; Asada MC; Sun J
    Gut Microbes; 2023 Dec; 15(2):2286674. PubMed ID: 38010886
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estrogen-mediated signaling is differentially affected by the expression levels of Sfrp1 in mammary epithelial cells.
    Gregory KJ; Schneider SS
    Cell Biol Int; 2015 Jul; 39(7):873-9. PubMed ID: 25809273
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Estrogen receptor activation at serine 305 is sufficient to upregulate cyclin D1 in breast cancer cells.
    Balasenthil S; Barnes CJ; Rayala SK; Kumar R
    FEBS Lett; 2004 Jun; 567(2-3):243-7. PubMed ID: 15178330
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression levels of estrogen receptor-alpha, estrogen receptor-beta, coactivators, and corepressors in breast cancer.
    Kurebayashi J; Otsuki T; Kunisue H; Tanaka K; Yamamoto S; Sonoo H
    Clin Cancer Res; 2000 Feb; 6(2):512-8. PubMed ID: 10690532
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wnt signalling induces accumulation of phosphorylated β-catenin in two distinct cytosolic complexes.
    Gerlach JP; Emmink BL; Nojima H; Kranenburg O; Maurice MM
    Open Biol; 2014 Nov; 4(11):140120. PubMed ID: 25392450
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The RUNX Transcriptional Coregulator, CBFβ, Suppresses Migration of ER
    Pegg HJ; Harrison H; Rogerson C; Shore P
    Mol Cancer Res; 2019 May; 17(5):1015-1023. PubMed ID: 30655324
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of Tumor-Associated AXIN1 Missense Mutations Identifies Variants That Activate β-Catenin Signaling.
    Zhang R; Li S; Schippers K; Li Y; Eimers B; Lavrijsen M; Wang L; Cui G; Chen X; Peppelenbosch MP; Lebbink JHG; Smits R
    Cancer Res; 2024 May; 84(9):1443-1459. PubMed ID: 38359148
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RUNX1 as a Novel Molecular Target for Breast Cancer.
    Ariffin NS
    Clin Breast Cancer; 2022 Aug; 22(6):499-506. PubMed ID: 35599145
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Delineating genetic alterations for tumor progression in the MCF10A series of breast cancer cell lines.
    Kadota M; Yang HH; Gomez B; Sato M; Clifford RJ; Meerzaman D; Dunn BK; Wakefield LM; Lee MP
    PLoS One; 2010 Feb; 5(2):e9201. PubMed ID: 20169162
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RSK2 inactivation cooperates with AXIN1 inactivation or β-catenin activation to promote hepatocarcinogenesis.
    Schaeffer S; Gupta B; Calatayud AL; Calderaro J; Caruso S; Hirsch TZ; Pelletier L; Zucman-Rossi J; Rebouissou S
    J Hepatol; 2023 Sep; 79(3):704-716. PubMed ID: 37201672
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer.
    Scheitz CJ; Lee TS; McDermitt DJ; Tumbar T
    EMBO J; 2012 Nov; 31(21):4124-39. PubMed ID: 23034403
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene expression in oestrogen-dependent human breast cancer xenograft tumours.
    Thompson AM; Steel CM; Foster ME; Kerr D; Paterson D; Deane D; Hawkins RA; Carter DC; Evans HJ
    Br J Cancer; 1990 Jul; 62(1):78-84. PubMed ID: 2390487
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular features of luminal breast cancer defined through spatial and single-cell transcriptomics.
    Yoshitake R; Mori H; Ha D; Wu X; Wang J; Wang X; Saeki K; Chang G; Shim HJ; Chan Y; Chen S
    Clin Transl Med; 2024 Jan; 14(1):e1548. PubMed ID: 38282415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Specific deletion of
    Xie R; Yi D; Zeng D; Jie Q; Kang Q; Zhang Z; Zhang Z; Xiao G; Chen L; Tong L; Chen D
    Elife; 2022 Dec; 11():. PubMed ID: 36541713
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Expression of key oestrogen-regulated genes differs substantially across the menstrual cycle in oestrogen receptor-positive primary breast cancer.
    Haynes BP; Viale G; Galimberti V; Rotmensz N; Gibelli B; A'Hern R; Smith IE; Dowsett M
    Breast Cancer Res Treat; 2013 Feb; 138(1):157-65. PubMed ID: 23378065
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of tRNA-derived small RNA (tsRNA) responsive to the tumor suppressor, RUNX1, in breast cancer.
    Farina NH; Scalia S; Adams CE; Hong D; Fritz AJ; Messier TL; Balatti V; Veneziano D; Lian JB; Croce CM; Stein GS; Stein JL
    J Cell Physiol; 2020 Jun; 235(6):5318-5327. PubMed ID: 31919859
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GATA4 and estrogen receptor alpha bind at SNPs rs9921222 and rs10794639 to regulate AXIN1 expression in osteoblasts.
    Suthon S; Perkins RS; Lin J; Crockarell JR; Miranda-Carboni GA; Krum SA
    Hum Genet; 2022 Dec; 141(12):1849-1861. PubMed ID: 35678873
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RUNX1 and its understudied role in breast cancer.
    Janes KA
    Cell Cycle; 2011 Oct; 10(20):3461-5. PubMed ID: 22024923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.