BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26916782)

  • 1. Finite element modelling of radial lentotomy cuts to improve the accommodation performance of the human lens.
    Burd HJ; Wilde GS
    Graefes Arch Clin Exp Ophthalmol; 2016 Apr; 254(4):727-37. PubMed ID: 26916782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of Ex Vivo Porcine Lens Shape During Simulated Accommodation, Before and After fs-Laser Treatment.
    Hahn J; Fromm M; Al Halabi F; Besdo S; Lubatschowski H; Ripken T; Krüger A
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5332-43. PubMed ID: 26275131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond laser photodisruption of the crystalline lens for restoring accommodation.
    Reggiani Mello GH; Krueger RR
    Int Ophthalmol Clin; 2011; 51(2):87-95. PubMed ID: 21383582
    [No Abstract]   [Full Text] [Related]  

  • 4. Numerical modelling of the accommodating lens.
    Burd HJ; Judge SJ; Cross JA
    Vision Res; 2002 Aug; 42(18):2235-251. PubMed ID: 12207982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. fs-Laser induced elasticity changes to improve presbyopic lens accommodation.
    Ripken T; Oberheide U; Fromm M; Schumacher S; Gerten G; Lubatschowski H
    Graefes Arch Clin Exp Ophthalmol; 2008 Jun; 246(6):897-906. PubMed ID: 18030488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Safety evaluation of femtosecond lentotomy on the porcine lens by optical measurement with 50-femtosecond laser pulses.
    Zhang J; Wang R; Chen B; Ye P; Zhang W; Zhao H; Zhen J; Huang Y; Wei Z; Gu Y
    Lasers Surg Med; 2013 Sep; 45(7):450-9. PubMed ID: 23926059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [fs-Lentotomy: presbyopia reversal by generating gliding planes inside the crystalline lens].
    Lubatschowski H; Schumacher S; Wegener A; Fromm M; Oberheide U; Hoffmann H; Gerten G
    Klin Monbl Augenheilkd; 2009 Dec; 226(12):984-90. PubMed ID: 20108193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femtosecond lentotomy: generating gliding planes inside the crystalline lens to regain accommodation ability.
    Lubatschowski H; Schumacher S; Fromm M; Wegener A; Hoffmann H; Oberheide U; Gerten G
    J Biophotonics; 2010 Jun; 3(5-6):265-8. PubMed ID: 20437418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond laser induced flexibility change of human donor lenses.
    Schumacher S; Oberheide U; Fromm M; Ripken T; Ertmer W; Gerten G; Wegener A; Lubatschowski H
    Vision Res; 2009 Jul; 49(14):1853-9. PubMed ID: 19427880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pig lenses in a lens stretcher: implications for presbyopia treatment.
    Kammel R; Ackermann R; Mai T; Damm C; Nolte S
    Optom Vis Sci; 2012 Jun; 89(6):908-15. PubMed ID: 22561204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model of accommodation: contributions of lens geometry and mechanical properties to the development of presbyopia.
    Van de Sompel D; Kunkel GJ; Hersh PS; Smits AJ
    J Cataract Refract Surg; 2010 Nov; 36(11):1960-71. PubMed ID: 21029906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretch-dependent changes in surface profiles of the human crystalline lens during accommodation: a finite element study.
    Pour HM; Kanapathipillai S; Zarrabi K; Manns F; Ho A
    Clin Exp Optom; 2015 Mar; 98(2):126-37. PubMed ID: 25727940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accommodation of the human lens capsule using a finite element model based on nonlinear regionally anisotropic biomembranes.
    David G; Pedrigi RM; Humphrey JD
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):302-307. PubMed ID: 27609339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Presbyopia treatment using a femtosecond laser].
    Blum M; Kunert K; Nolte S; Riehemann S; Palme M; Peschel T; Dick M; Dick HB
    Ophthalmologe; 2006 Dec; 103(12):1014-9. PubMed ID: 17111185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis and the Schachar mechanism of accommodation.
    Schachar RA
    J Cataract Refract Surg; 2011 May; 37(5):979. PubMed ID: 21511174
    [No Abstract]   [Full Text] [Related]  

  • 16. Experimental protocols for ex vivo lens stretching tests to investigate the biomechanics of the human accommodation apparatus.
    Pinilla Cortés L; Burd HJ; Montenegro GA; D'Antin JC; Mikielewicz M; Barraquer RI; Michael R
    Invest Ophthalmol Vis Sci; 2015 May; 56(5):2926-32. PubMed ID: 26024078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the behavior of natural and refilled porcine lenses in a robotic lens stretcher.
    Reilly MA; Hamilton PD; Perry G; Ravi N
    Exp Eye Res; 2009 Mar; 88(3):483-94. PubMed ID: 19041865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the external force acting on the human eye lens during accommodation by finite element modelling.
    Hermans EA; Dubbelman M; van der Heijde GL; Heethaar RM
    Vision Res; 2006 Oct; 46(21):3642-50. PubMed ID: 16750240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refractive lens exchange for presbyopia.
    Kashani S; Mearza AA; Claoué C
    Cont Lens Anterior Eye; 2008 Jun; 31(3):117-21. PubMed ID: 18406656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional ultrasound biomicroscopy, environmental and conventional scanning electron microscopy investigations of the human zonula ciliaris for numerical modelling of accommodation.
    Stachs O; Martin H; Behrend D; Schmitz KP; Guthoff R
    Graefes Arch Clin Exp Ophthalmol; 2006 Jul; 244(7):836-44. PubMed ID: 16205936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.