BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26917327)

  • 1. Influence of nuclear structure on the formation of radiation-induced lethal lesions.
    Friedman DA; Tait L; Vaughan AT
    Int J Radiat Biol; 2016 May; 92(5):229-40. PubMed ID: 26917327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of DNA cluster damage and chromosome aberrations in radiation-induced cell killing: a theoretical approach.
    Ballarini F; Altieri S; Bortolussi S; Carante M; Giroletti E; Protti N
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):75-9. PubMed ID: 25877543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nucleo-shuttling of the ATM protein as a basis for a novel theory of radiation response: resolution of the linear-quadratic model.
    Bodgi L; Foray N
    Int J Radiat Biol; 2016; 92(3):117-31. PubMed ID: 26907628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RITCARD: Radiation-Induced Tracks, Chromosome Aberrations, Repair and Damage.
    Plante I; Ponomarev A; Patel Z; Slaba T; Hada M
    Radiat Res; 2019 Sep; 192(3):282-298. PubMed ID: 31295089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative biological effectiveness of high linear energy transfer α-particles for the induction of DNA-double-strand breaks, chromosome aberrations and reproductive cell death in SW-1573 lung tumour cells.
    Franken NA; Hovingh S; Ten Cate R; Krawczyk P; Stap J; Hoebe R; Aten J; Barendsen GW
    Oncol Rep; 2012 Mar; 27(3):769-74. PubMed ID: 22200791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Models of chromosome aberration induction: an example based on radiation track structure.
    Ballarini F; Ottolenghi A
    Cytogenet Genome Res; 2004; 104(1-4):149-56. PubMed ID: 15162029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 'BioQuaRT' project: design of a novel in situ protocol for the simultaneous visualisation of chromosomal aberrations and micronuclei after irradiation at microbeam facilities.
    Patrono C; Monteiro Gil O; Giesen U; Langner F; Pinto M; Rabus H; Testa A
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):197-9. PubMed ID: 25877532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for interphase chromosomes and evaluation of radiation-induced aberrations.
    Holley WR; Mian IS; Park SJ; Rydberg B; Chatterjee A
    Radiat Res; 2002 Nov; 158(5):568-80. PubMed ID: 12385634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation.
    Friedland W; Kundrát P
    Mutat Res; 2013 Aug; 756(1-2):213-23. PubMed ID: 23811166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proximity effects in chromosome aberration induction by low-LET ionizing radiation.
    Tello Cajiao JJ; Carante MP; Bernal Rodriguez MA; Ballarini F
    DNA Repair (Amst); 2017 Oct; 58():38-46. PubMed ID: 28863396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lethal and potentially lethal lesions induced by radiation--a unified repair model.
    Curtis SB
    Radiat Res; 1986 May; 106(2):252-70. PubMed ID: 3704115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From radiation-induced chromosome damage to cell death: modelling basic mechanisms and applications to boron neutron capture therapy.
    Ballarini F; Bortolussi S; Clerici AM; Ferrari C; Protti N; Altieri S
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):523-7. PubMed ID: 21159746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin and insulin-like growth factor-1 (IGF-1) inhibit repair of potentially lethal radiation damage and chromosome aberrations and alter DNA repair kinetics in plateau-phase A549 cells.
    Jayanth VR; Belfi CA; Swick AR; Varnes ME
    Radiat Res; 1995 Aug; 143(2):165-74. PubMed ID: 7631009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Determination of DNA damage in vitro].
    Dikomey E
    Nuklearmedizin; 2010; 49 Suppl 1():S64-8. PubMed ID: 21152684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of track directions on the biological consequences in cells irradiated with high LET heavy ions.
    Fujii Y; Yurkon CR; Maeda J; Genet SC; Okayasu R; Kitamura H; Fujimori A; Kato TA
    Int J Radiat Biol; 2013 Jun; 89(6):401-10. PubMed ID: 23363030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High levels of chromosome aberrations correlate with impaired in vitro radiation-induced apoptosis and DNA repair in human B-chronic lymphocytic leukaemia cells.
    Blaise R; Alapetite C; Masdehors P; Merle-Beral H; Roulin C; Delic J; Sabatier L
    Int J Radiat Biol; 2002 Aug; 78(8):671-9. PubMed ID: 12194750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of chromosome aberrations in unirradiated chromatin after partial irradiation of a cell nucleus.
    Ludwików G; Xiao Y; Hoebe RA; Franken NA; Darroudi F; Stap J; Van Oven CH; Van Noorden CJ; Aten JA
    Int J Radiat Biol; 2002 Apr; 78(4):239-47. PubMed ID: 12020435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional cell-cycle chromatin conformation changes in the presence of DNA damage result into chromatid breaks: a new insight in the formation of radiation-induced chromosomal aberrations based on the direct observation of interphase chromatin.
    Pantelias GE; Terzoudi GI
    Mutat Res; 2010 Aug; 701(1):27-37. PubMed ID: 20398788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ratios of radiation-produced chromosome aberrations as indicators of large-scale DNA geometry during interphase.
    Sachs RK; Awa A; Kodama Y; Nakano M; Ohtaki K; Lucas JN
    Radiat Res; 1993 Mar; 133(3):345-50. PubMed ID: 8451385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between the recovery from sublethal X-ray damage and the rejoining of chromosome breaks in normal human fibroblasts.
    Bedford JS; Cornforth MN
    Radiat Res; 1987 Sep; 111(3):406-23. PubMed ID: 3659276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.