These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26917383)

  • 1. Microcrystalline-cellulose and polypropylene based composite: A simple, selective and effective material for microwavable packaging.
    Ummartyotin S; Pechyen C
    Carbohydr Polym; 2016 May; 142():133-40. PubMed ID: 26917383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction and release of catechin from anhydride maleic-grafted polypropylene films.
    López de Dicastillo C; Castro-López Mdel M; Lasagabaster A; López-Vilariño JM; González-Rodríguez MV
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3281-9. PubMed ID: 23537090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Cellulose-Basalt Polypropylene Composites with Enhanced Compatibility: The Role of Coupling Agent.
    Sergi C; Sbardella F; Lilli M; Tirillò J; Calzolari A; Sarasini F
    Molecules; 2020 Sep; 25(19):. PubMed ID: 32987669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave heating causes rapid degradation of antioxidants in polypropylene packaging, leading to greatly increased specific migration to food simulants as shown by ESI-MS and GC-MS.
    Alin J; Hakkarainen M
    J Agric Food Chem; 2011 May; 59(10):5418-27. PubMed ID: 21513311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocomposites based on Argan nut shell and a polymer matrix: Effect of filler content and coupling agent.
    Essabir H; Bensalah MO; Rodrigue D; Bouhfid R; Qaiss Ael K
    Carbohydr Polym; 2016 Jun; 143():70-83. PubMed ID: 27083345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and properties of polypropylene/clay nanocomposites for food packaging.
    Choi RN; Cheigh CI; Lee SY; Chung MS
    J Food Sci; 2011 Oct; 76(8):N62-7. PubMed ID: 22417600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of carboxylic acids as compatibilizer agent on mechanical properties of thermoplastic starch and polypropylene blends.
    Martins AB; Santana RM
    Carbohydr Polym; 2016 Jan; 135():79-85. PubMed ID: 26453854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics.
    Ljungberg N; Bonini C; Bortolussi F; Boisson C; Heux L; Cavaillé JY
    Biomacromolecules; 2005; 6(5):2732-9. PubMed ID: 16153113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology and phase controlled cobalt nanostructures in magnetic polypropylene nanocomposites: the role of alkyl chain-length in maleic anhydride grafted polypropylene.
    He Q; Yuan T; Luo Z; Haldolaarachchige N; Young DP; Wei S; Guo Z
    Chem Commun (Camb); 2013 Apr; 49(26):2679-81. PubMed ID: 23435465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biorenewable, transparent, and oxygen/moisture barrier nanocellulose/nanochitin-based coating on polypropylene for food packaging applications.
    Nguyen HL; Tran TH; Hao LT; Jeon H; Koo JM; Shin G; Hwang DS; Hwang SY; Park J; Oh DX
    Carbohydr Polym; 2021 Nov; 271():118421. PubMed ID: 34364562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical imaging of wood-polypropylene composites.
    Harper DP; Wolcott MP
    Appl Spectrosc; 2006 Aug; 60(8):898-905. PubMed ID: 16925926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application.
    Ghaderi M; Mousavi M; Yousefi H; Labbafi M
    Carbohydr Polym; 2014 Apr; 104():59-65. PubMed ID: 24607160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA.
    Zhou C; Shi Q; Guo W; Terrell L; Qureshi AT; Hayes DJ; Wu Q
    ACS Appl Mater Interfaces; 2013 May; 5(9):3847-54. PubMed ID: 23590943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator.
    Zhang J; Liu Z; Kong Q; Zhang C; Pang S; Yue L; Wang X; Yao J; Cui G
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):128-34. PubMed ID: 23227828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers.
    Jur JS; Spagnola JC; Lee K; Gong B; Peng Q; Parsons GN
    Langmuir; 2010 Jun; 26(11):8239-44. PubMed ID: 20163129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CTMP-based cellulose fibers modified with core-shell latex for reinforcing biocomposites.
    Pan Y; Xiao H; Zhao Y; Wang Z
    Carbohydr Polym; 2013 Jun; 95(1):428-33. PubMed ID: 23618289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high strength nanocomposite based on microcrystalline cellulose and polyurethane.
    Wu Q; Henriksson M; Liu X; Berglund LA
    Biomacromolecules; 2007 Dec; 8(12):3687-92. PubMed ID: 18030998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selected morphological and functional properties of extruded acetylated starch-cellulose foams.
    Guan J; Hanna MA
    Bioresour Technol; 2006 Sep; 97(14):1716-26. PubMed ID: 16769212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance green electronic substrate employing flexible and transparent cellulose films.
    Sun Y; Chen D; Li Y; Sun S; Zheng J; Cui J; Wang G; Zheng L; Wang Y; Zhou H
    Carbohydr Polym; 2021 Oct; 270():118359. PubMed ID: 34364604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.