These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
472 related articles for article (PubMed ID: 26917392)
1. Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Yin Y; Tian X; Jiang X; Wang H; Gao W Carbohydr Polym; 2016 May; 142():206-12. PubMed ID: 26917392 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Liu H; Liu D; Yao F; Wu Q Bioresour Technol; 2010 Jul; 101(14):5685-92. PubMed ID: 20206507 [TBL] [Abstract][Full Text] [Related]
3. Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP. Wang Y; Xiao Y; Huang X; Lang M J Colloid Interface Sci; 2011 Aug; 360(2):415-21. PubMed ID: 21601216 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of transparent PMMA-cellulose-based nanocomposites. Kiziltas EE; Kiziltas A; Bollin SC; Gardner DJ Carbohydr Polym; 2015; 127():381-9. PubMed ID: 25965497 [TBL] [Abstract][Full Text] [Related]
5. Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. Kan KH; Li J; Wijesekera K; Cranston ED Biomacromolecules; 2013 Sep; 14(9):3130-9. PubMed ID: 23865631 [TBL] [Abstract][Full Text] [Related]
6. Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites. Le Gars M; Bras J; Salmi-Mani H; Ji M; Dragoe D; Faraj H; Domenek S; Belgacem N; Roger P Carbohydr Polym; 2020 Apr; 234():115899. PubMed ID: 32070519 [TBL] [Abstract][Full Text] [Related]
7. Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study. Boujemaoui A; Cobo Sanchez C; Engström J; Bruce C; Fogelström L; Carlmark A; Malmström E ACS Appl Mater Interfaces; 2017 Oct; 9(40):35305-35318. PubMed ID: 28895728 [TBL] [Abstract][Full Text] [Related]
10. In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization. Yu J; Wang C; Wang J; Chu F Carbohydr Polym; 2016 May; 141():143-50. PubMed ID: 26877006 [TBL] [Abstract][Full Text] [Related]
11. Cellulose nanocrystal driven microphase separated nanocomposites: Enhanced mechanical performance and nanostructured morphology. Zhang J; Zhang X; Li MC; Dong J; Lee S; Cheng HN; Lei T; Wu Q Int J Biol Macromol; 2019 Jun; 130():685-694. PubMed ID: 30826401 [TBL] [Abstract][Full Text] [Related]
12. Effect of Reaction Media on Grafting Hydrophobic Polymers from Cellulose Nanocrystals Kiriakou MV; Berry RM; Hoare T; Cranston ED Biomacromolecules; 2021 Aug; 22(8):3601-3612. PubMed ID: 34252279 [TBL] [Abstract][Full Text] [Related]
13. Modification of nanocellulose via atom transfer radical polymerization and its reinforcing effect in waterborne UV-curable resin. Wang Q; Yang Z; Feng X; Liu X Int J Biol Macromol; 2023 Dec; 253(Pt 2):126743. PubMed ID: 37689290 [TBL] [Abstract][Full Text] [Related]
16. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites. Mariano M; El Kissi N; Dufresne A Carbohydr Polym; 2016 Feb; 137():174-183. PubMed ID: 26686118 [TBL] [Abstract][Full Text] [Related]
17. A comparative study on grafting polymers from cellulose nanocrystals via surface-initiated atom transfer radical polymerization (ATRP) and activator re-generated by electron transfer ATRP. Zhang Z; Wang X; Tam KC; Sèbe G Carbohydr Polym; 2019 Feb; 205():322-329. PubMed ID: 30446111 [TBL] [Abstract][Full Text] [Related]