These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 26917471)

  • 1. Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor.
    Beuve A; Wu C; Cui C; Liu T; Jain MR; Huang C; Yan L; Kholodovych V; Li H
    J Proteomics; 2016 Apr; 138():40-7. PubMed ID: 26917471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor.
    Beuve A
    Antioxid Redox Signal; 2017 Jan; 26(3):137-149. PubMed ID: 26906466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guanylyl cyclase sensitivity to nitric oxide is protected by a thiol oxidation-driven interaction with thioredoxin-1.
    Huang C; Alapa M; Shu P; Nagarajan N; Wu C; Sadoshima J; Kholodovych V; Li H; Beuve A
    J Biol Chem; 2017 Sep; 292(35):14362-14370. PubMed ID: 28659344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detergent-free biotin switch combined with liquid chromatography/tandem mass spectrometry in the analysis of S-nitrosylated proteins.
    Han P; Chen C
    Rapid Commun Mass Spectrom; 2008 Apr; 22(8):1137-45. PubMed ID: 18335467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation.
    Sayed N; Baskaran P; Ma X; van den Akker F; Beuve A
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12312-7. PubMed ID: 17636120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Balance between
    Yamashita AMS; Ancillotti MTC; Rangel LP; Fontenele M; Figueiredo-Freitas C; Possidonio AC; Soares CP; Sorenson MM; Mermelstein C; Nogueira L
    Am J Physiol Cell Physiol; 2017 Jul; 313(1):C11-C26. PubMed ID: 28381519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic and mass spectroscopic quantitation of protein S-nitrosation differentiates NO-donors.
    Sinha V; Wijewickrama GT; Chandrasena RE; Xu H; Edirisinghe PD; Schiefer IT; Thatcher GR
    ACS Chem Biol; 2010 Jul; 5(7):667-80. PubMed ID: 20524644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heme-assisted S-nitrosation desensitizes ferric soluble guanylate cyclase to nitric oxide.
    Fernhoff NB; Derbyshire ER; Underbakke ES; Marletta MA
    J Biol Chem; 2012 Dec; 287(51):43053-62. PubMed ID: 23093402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Labeling Biotin Switch Assay to Reduce Bias Derived From Different Cysteine Subpopulations: A Method to Maximize S-Nitrosylation Detection.
    Chung HS; Murray CI; Venkatraman V; Crowgey EL; Rainer PP; Cole RN; Bomgarden RD; Rogers JC; Balkan W; Hare JM; Kass DA; Van Eyk JE
    Circ Res; 2015 Oct; 117(10):846-57. PubMed ID: 26338901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-mapping of in vitro S-nitrosation in cardiac mitochondria: implications for cardioprotection.
    Murray CI; Kane LA; Uhrigshardt H; Wang SB; Van Eyk JE
    Mol Cell Proteomics; 2011 Mar; 10(3):M110.004721. PubMed ID: 21036925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of soluble guanylate cyclase by stoichiometric S-nitrosation.
    Mayer B; Kleschyov AL; Stessel H; Russwurm M; Münzel T; Koesling D; Schmidt K
    Mol Pharmacol; 2009 Apr; 75(4):886-91. PubMed ID: 19114587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrosopersulfide (SSNO(-)) accounts for sustained NO bioactivity of S-nitrosothiols following reaction with sulfide.
    Cortese-Krott MM; Fernandez BO; Santos JL; Mergia E; Grman M; Nagy P; Kelm M; Butler A; Feelisch M
    Redox Biol; 2014; 2():234-44. PubMed ID: 24494198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promotion of
    Chiang CW; Jhang KW; Chen JL; Hsu LC; Huang WH; Chen HC; Lin TJ; Sun CY; Li YN
    Chem Commun (Camb); 2023 Aug; 59(64):9774-9777. PubMed ID: 37486167
    [No Abstract]   [Full Text] [Related]  

  • 14. A genetic analysis of nitrosative stress.
    Foster MW; Liu L; Zeng M; Hess DT; Stamler JS
    Biochemistry; 2009 Feb; 48(4):792-9. PubMed ID: 19138101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrosothiol formation and S-nitrosation signaling through nitric oxide synthases.
    Wynia-Smith SL; Smith BC
    Nitric Oxide; 2017 Feb; 63():52-60. PubMed ID: 27720836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosteric modulation by S-nitrosation in the low-O₂ affinity myoglobin from rainbow trout.
    Helbo S; Fago A
    Am J Physiol Regul Integr Comp Physiol; 2011 Jan; 300(1):R101-8. PubMed ID: 20962203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alteration of S-nitrosothiol homeostasis and targets for protein S-nitrosation in human hepatocytes.
    López-Sánchez LM; Corrales FJ; González R; Ferrín G; Muñoz-Castañeda JR; Ranchal I; Hidalgo AB; Briceño J; López-Cillero P; Gómez MA; De La Mata M; Muntané J; Rodríguez-Ariza A
    Proteomics; 2008 Nov; 8(22):4709-20. PubMed ID: 18850629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-nitrosoglutathione.
    Broniowska KA; Diers AR; Hogg N
    Biochim Biophys Acta; 2013 May; 1830(5):3173-81. PubMed ID: 23416062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Protein Targets of
    Falco JA; Wynia-Smith SL; McCoy J; Smith BC; Weerapana E
    ACS Chem Biol; 2024 Jan; 19(1):193-207. PubMed ID: 38159293
    [No Abstract]   [Full Text] [Related]  

  • 20. Thioredoxin-Dependent Decomposition of Protein S-Nitrosothiols.
    Kneeshaw S; Spoel SH
    Methods Mol Biol; 2018; 1747():281-297. PubMed ID: 29600467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.