These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 26917471)

  • 21. Redox regulation of soluble guanylyl cyclase.
    Shah RC; Sanker S; Wood KC; Durgin BG; Straub AC
    Nitric Oxide; 2018 Jun; 76():97-104. PubMed ID: 29578056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures.
    Hao G; Derakhshan B; Shi L; Campagne F; Gross SS
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):1012-7. PubMed ID: 16418269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-step preparation of S-nitrosated human serum albumin with high biological activities.
    Ishima Y; Hiroyama S; Kragh-Hansen U; Maruyama T; Sawa T; Akaike T; Kai T; Otagiri M
    Nitric Oxide; 2010 Sep; 23(2):121-7. PubMed ID: 20451647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure/function of the soluble guanylyl cyclase catalytic domain.
    Childers KC; Garcin ED
    Nitric Oxide; 2018 Jul; 77():53-64. PubMed ID: 29702251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic approaches to evaluate protein S-nitrosylation in disease.
    López-Sánchez LM; López-Pedrera C; Rodríguez-Ariza A
    Mass Spectrom Rev; 2014; 33(1):7-20. PubMed ID: 23775552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay.
    Murray CI; Uhrigshardt H; O'Meally RN; Cole RN; Van Eyk JE
    Mol Cell Proteomics; 2012 Feb; 11(2):M111.013441. PubMed ID: 22126794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. S-Nitrosation of Conserved Cysteines Modulates Activity and Stability of S-Nitrosoglutathione Reductase (GSNOR).
    Guerra D; Ballard K; Truebridge I; Vierling E
    Biochemistry; 2016 May; 55(17):2452-64. PubMed ID: 27064847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox regulation of plant S-nitrosoglutathione reductase activity through post-translational modifications of cysteine residues.
    Tichá T; Lochman J; Činčalová L; Luhová L; Petřivalský M
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):27-33. PubMed ID: 29061305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling.
    Smith BC; Marletta MA
    Curr Opin Chem Biol; 2012 Dec; 16(5-6):498-506. PubMed ID: 23127359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SNO spectral counting (SNOSC), a label-free proteomic method for quantification of changes in levels of protein S-nitrosation.
    Zhang X; Huang B; Chen C
    Free Radic Res; 2012 Aug; 46(8):1044-50. PubMed ID: 22512350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical methods to detect S-nitrosation.
    Wang H; Xian M
    Curr Opin Chem Biol; 2011 Feb; 15(1):32-7. PubMed ID: 21036657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extracellular S-nitrosoglutathione, but not S-nitrosocysteine or N(2)O(3), mediates protein S-nitrosation in rat spinal cord slices.
    Romero JM; Bizzozero OA
    J Neurochem; 2006 Nov; 99(4):1299-310. PubMed ID: 17018024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methodologies for the characterization, identification and quantification of S-nitrosylated proteins.
    Foster MW
    Biochim Biophys Acta; 2012 Jun; 1820(6):675-83. PubMed ID: 21440604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The NO-heme signaling hypothesis.
    Kleschyov AL
    Free Radic Biol Med; 2017 Nov; 112():544-552. PubMed ID: 28877508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. S-nitrosothiol transport via PEPT2 mediates biological effects of nitric oxide gas exposure in macrophages.
    Brahmajothi MV; Sun NZ; Auten RL
    Am J Respir Cell Mol Biol; 2013 Feb; 48(2):230-9. PubMed ID: 23239496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation and inhibition of soluble guanylyl cyclase by S-nitrosocysteine: involvement of amino acid transport system L.
    Riego JA; Broniowska KA; Kettenhofen NJ; Hogg N
    Free Radic Biol Med; 2009 Aug; 47(3):269-74. PubMed ID: 19409484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of sGC via hsp90, Cellular Heme, sGC Agonists, and NO: New Pathways and Clinical Perspectives.
    Ghosh A; Stuehr DJ
    Antioxid Redox Signal; 2017 Feb; 26(4):182-190. PubMed ID: 26983679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Soluble guanylyl cyclase mediates noncanonical nitric oxide signaling by nitrosothiol transfer under oxidative stress.
    Cui C; Wu C; Shu P; Liu T; Li H; Beuve A
    Redox Biol; 2022 Sep; 55():102425. PubMed ID: 35961098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solid-phase capture for the detection and relative quantification of S-nitrosoproteins by mass spectrometry.
    Thompson JW; Forrester MT; Moseley MA; Foster MW
    Methods; 2013 Aug; 62(2):130-7. PubMed ID: 23064468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of soluble guanylyl cyclase by the nitrovasodilator 3-morpholinosydnonimine involves formation of S-nitrosoglutathione.
    Schrammel A; Pfeiffer S; Schmidt K; Koesling D; Mayer B
    Mol Pharmacol; 1998 Jul; 54(1):207-12. PubMed ID: 9658207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.